甲乙兩隊參加奧運知識競賽,每隊3人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分。假設甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為且各人正確與否相互之間沒有影響.用ε表示甲隊的總得分.

(Ⅰ)求隨機變量ε分布列和數(shù)學期望; 

(Ⅱ)用A表示“甲、乙兩個隊總得分之和等于3”這一事件,用B表示“甲隊總得分

大于乙隊總得分”這一事件,求PAB).

(Ⅰ)解法一:由題意知,ε的可能取值為0,1,2,3,且

所以ε的分布列為

ε

0

1

2

3

P

ε的數(shù)學期望為

Eε=

解法二:根據(jù)題設可知

因此ε的分布列為

(Ⅱ)解法一:用C表示“甲得2分乙得1分”這一事件,用D表示“甲得3分乙得0分”這一事件,所以AB=CD,且C、D互斥,又

由互斥事件的概率公式得

解法二:用Ak表示“甲隊得k分”這一事件,用Bk表示“已隊得k分”這一事件,k=0,1,2,3由于事件A3B0,A2B1為互斥事件,故事

PAB)=PA3B0A2B1)=PA3B0)+PA2B1).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年山東卷理)(本小題滿分12分)

甲乙兩隊參加奧運知識競賽,每隊3人,每人回答一個問題,答對者為本隊贏得一分,

答錯得零分。假設甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為且各人正確與否相互之間沒有影響.用ε表示甲隊的總得分.

(Ⅰ)求隨機變量ε分布列和數(shù)學期望;                                                                           

(Ⅱ)用A表示“甲、乙兩個隊總得分之和等于3”這一事件,用B表示“甲隊總得分大于乙隊總得分”這一事件,求P(AB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩隊參加奧運知識競賽,每隊3人,每人回答一個問題,答對者為本隊贏得一分,

答錯得零分。假設甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為且各人正確與否相互之間沒有影響.用ε表示甲隊的總得分.

(Ⅰ)求隨機變量ε分布列;                                                    

(Ⅱ)用A表示“甲、乙兩個隊總得分之和等于3”這一事件,用B表示“甲隊總得分大于乙隊總得分”這一事件,求P(AB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(山東卷理18)甲乙兩隊參加奧運知識競賽,每隊3人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分。假設甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為且各人正確與否相互之間沒有影響.用ε表示甲隊的總得分.

(Ⅰ)求隨機變量ξ分布列和數(shù)學期望;      

(Ⅱ)用A表示“甲、乙兩個隊總得分之和等于3”這一事件,用B表示“甲隊總得分大于乙隊總得分”這一事件,求P(AB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(山東卷理18)甲乙兩隊參加奧運知識競賽,每隊3人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分。假設甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為且各人正確與否相互之間沒有影響.用ε表示甲隊的總得分.

(Ⅰ)求隨機變量ξ分布列和數(shù)學期望;      

(Ⅱ)用A表示“甲、乙兩個隊總得分之和等于3”這一事件,用B表示“甲隊總得分大于乙隊總得分”這一事件,求P(AB).

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年陜西省高三高考模擬理科數(shù)學(解析版) 題型:解答題

甲乙兩隊參加奧運知識競賽,每隊三人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分.假設甲隊中每人答對的概率均為,乙隊中三人答對的概率分別為,且各人回答得正確與否相互之間沒有影響.

(1)若用表示甲隊的總得分,求隨機變量分布列和數(shù)學期望;

(2)用表示事件“甲、乙兩隊總得分之和為”,用表示事件“甲隊總得分大于乙隊總得分”,求.

 

查看答案和解析>>

同步練習冊答案