橢圓
x2
a2
+
y2
b2
=1
與雙曲線
x2
b2
-
y2
c2
=1
有相同的焦點(diǎn)F1,F(xiàn)2,P為兩曲線的一個(gè)交點(diǎn),且PF1⊥PF2,則兩曲線的離心率之積是
2
3
3
2
3
3
分析:由題設(shè)中的條件,設(shè)焦距為2m,橢圓的長(zhǎng)軸長(zhǎng)2a,雙曲線的實(shí)軸長(zhǎng)為2b,根據(jù)橢圓和雙曲線的性質(zhì)以及勾弦定理建立方程,聯(lián)立可得m,a,b的等式,從而可得到結(jié)論.
解答:解:由題意設(shè)焦距為2m,橢圓的長(zhǎng)軸長(zhǎng)2a,雙曲線的實(shí)軸長(zhǎng)為2b,不妨令P在雙曲線的右支上
由雙曲線的定義|PF1|-|PF2|=2b  ①
由橢圓的定義|PF1|+|PF2|=2a  ②
又PF1⊥PF2,故|PF1|2+|PF2|2=4m2   ③
2+②2得|PF1|2+|PF2|2=2a2+2b2
∴a2+b2=2m2,
∵a2-b2=m2,
∴a2=
3
2
m2,b2=
1
2
m2
∴橢圓的離心率為
m
a
=
6
3
,雙曲線的離心率為
m
b
=
2

∴兩曲線的離心率之積是
m
a
×
m
b
=
m2
ab
=
2
3
3

故答案為:
2
3
3
點(diǎn)評(píng):本題考查圓錐曲線的共同特征,考查通過(guò)橢圓與雙曲線的定義焦點(diǎn)三角形中用勾弦定理建立三個(gè)方程聯(lián)立求橢圓離心率e1與雙曲線心率e2滿足的關(guān)系式,解決本題的關(guān)鍵是根據(jù)所得出的條件靈活變形,湊出兩曲線離心率所滿足的方程來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),求證:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè) A(x1,y1)、B(x2,y2)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的兩點(diǎn),O為坐標(biāo)原點(diǎn),向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
,
y2
b
)
m
n
=0

(1)若A點(diǎn)坐標(biāo)為(a,0),求點(diǎn)B的坐標(biāo);
(2)設(shè)
OM
=cosθ•
OA
+sinθ•
OB
,證明點(diǎn)M在橢圓上;
(3)若點(diǎn)P、Q為橢圓 上的兩點(diǎn),且
PQ
OB
,試問(wèn):線段PQ能否被直線OA平分?若能平分,請(qǐng)加以證明;若不能平分,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川 題型:解答題

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案