如圖所示,一個確定的凸五邊形 ABCDE,令x=
AB
AC
,y=
AB
AD
,z=
AB
AE
,則x、y、z 的大小順序為
 
考點:平面向量數(shù)量積的運算,向量在幾何中的應(yīng)用
專題:平面向量及應(yīng)用
分析:根據(jù)向量的數(shù)量積公式分別判斷x,y,z的符號,得到大小關(guān)系.
解答: 解:由題意,x=
AB
AC
=AB×ACcos∠BAC>0,
y=
AB
AD
=AB×ADcos∠BAD≈AB×ACcos∠BAD,
又∠BAD>∠BAC
所以cos∠BAD<cos∠BAC,
所以x>y>0
z=
AB
AE
=AB×AEcos∠BAE<0,
所以x>y>z.
故答案為:x>y>z.
點評:本題考查了向量的數(shù)量積的公式;屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

編號分別為A1,A2,A3,…,A12的12名籃球運動員在某次籃球比賽中的得分記錄如下:
運動員編號A1A2A3A4A5A6A7A8A9A10A11A12
得分510121682127156221829
(1)完成如下的頻率分布表:
得分區(qū)間頻數(shù)頻率
[0,10)3
1
4
[10,20)
[20,30)
合計121.00
(2)從得分在區(qū)間[10,20)內(nèi)的運動員中隨機抽取2人,求這2人得分之和大于25的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b為不相等的實數(shù),求證:(a4+b4)(a2+b2)>(a3+b32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=Asin(2x+
π
6
)( A>0)的部分圖象如圖所示.
(Ⅰ)寫出f(x)的最小正周期及 A,x0的值;
(Ⅱ)求f(x)在(-
π
4
,
π
3
)上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校衛(wèi)生所成立了調(diào)查小組,調(diào)查“按時刷牙與患齲齒的關(guān)系”,對該校某年級700名學(xué)生進行檢查,按患齲齒和不患齲齒分類,得匯總數(shù)據(jù):按時刷牙且不患齲齒的學(xué)生有60名,不按時刷牙但不患齲齒的學(xué)生有100名,按時刷牙但患齲齒的學(xué)生有140名.
(1)能否在犯錯概率不超過0.01的前提下,認(rèn)為該年級學(xué)生的按時刷牙與患齲齒有關(guān)系?
(2)4名校衛(wèi)生所工作人員甲、乙、丙、丁被隨機分成兩組,每組2人,一組負(fù)責(zé)數(shù)據(jù)收集,
另一組負(fù)責(zé)數(shù)據(jù)處理,求工作人員甲分到“負(fù)責(zé)收集數(shù)據(jù)組”并且工作人員乙分到“負(fù)責(zé)數(shù)據(jù)處理組”的概率.
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
P(K2≥k00.0100.0050.001
K06.635
 
7.879
 
10.828
 
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)習(xí)小組共有A,B,C,D四位同學(xué),他們的身高(單位:米)及體重指標(biāo)(單位:千克/米2
如下表所示:
ABCD
身高1.691.731.751.80
體重指標(biāo)19.225.018.524.8
(1)求這四位同學(xué)體重指標(biāo)的中位數(shù).
(2)從該小組身高低于1.80的同學(xué)中任選2人,求選到的2人身高都在1.75以下的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
-x2+2x+1(x≥0)
e-x(x<0)
關(guān)于x的方程f(x)=m(m∈R)恰有三個互不相等的實數(shù)根x1,x2,x3,則x1x2x3的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx+k
ex
(其中k∈R,e=2.71828…是自然數(shù)的底數(shù)),f′(x)為f(x)的導(dǎo)函數(shù).
(1)當(dāng)k=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若x∈(0,1]時,f′(x)=0都有解,求k的取值范圍;
(3)若f′(1)=0,試證明:對任意x>0,f′(x)<
e-2+1
x2+x
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)與C2
y2
b2
-
x2
a2
=1(a>0,b>0),給出下列四個結(jié)論:
①C1與C2的焦距相等;
②C1與C2的離心率相等;
③C1與C2的漸近線相同;
④C1的焦點到其漸近線的距離與C2的焦點到其漸近線的距離相等.
其中一定正確的結(jié)論是
 
(填序號).

查看答案和解析>>

同步練習(xí)冊答案