【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假.

(1)對數(shù)函數(shù)都是單調(diào)函數(shù);

(2)至少有一個整數(shù),它既能被11整除,又能被9整除;

(3)x{x|x0},

(4)x0Z,log2x02.

【答案】見解析

【解析】試題分析:根據(jù)全稱命題和特稱命題的定義,全稱命題要包含全稱量詞,特稱命題要包含特稱量詞,我們逐一分析四個命題(1)中隱含“所有”,(2)中含至少,(3)中含任意,(4)中含存在,易得到答案.

試題解析:(1)本題隱含了全稱量詞“所有的”,可表述為“所有的對數(shù)函數(shù)都是單調(diào)函數(shù)”,是全稱命題,且為真命題.

(2)命題中含有存在量詞“至少有一個”,因此是特稱命題,真命題.

(3)命題中含有全稱量詞“”,是全稱命題,真命題;

(4)命題中含有存在量詞“”,是特稱命題,真命題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐A﹣BCD中,E,F(xiàn),G,H分別是棱AB,BC,CD,DA的中點(diǎn),則當(dāng)AC,BD滿足條件 時,四邊形EFGH為菱形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出40個數(shù):1,2,4,7,11,16,…,要計算這40個數(shù)的和,如圖給出了該問題的程序框圖,那么框圖①處和執(zhí)行框②處可分別填入( )

A. ; B. ;

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 所在平面互相垂直,且, 分別為AC、DC、AD的中點(diǎn)

1)求證: 平面BCG;

2)求三棱錐D-BCG的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形中, ,將四邊形沿著折疊,得到圖2所示的三棱錐,其中

(1)證明:平面平面

(2)若中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2
(1)求函數(shù)f(x)的定義域和值域;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax﹣2a2(x∈R).
(1)關(guān)于x的不等式f(x)<0的解集為A,且A[﹣1,2],求a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得當(dāng)x∈R時, 成立.若存在給出證明,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.
(1)若A∩B={2},求實(shí)數(shù)a的值;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某奧運(yùn)會主體育場的簡化鋼結(jié)構(gòu)俯視圖如圖所示,內(nèi)外兩圈的鋼骨架是離心率相同的橢圓,我們稱這兩個橢圓相似。

(1)已知橢圓,寫出與橢圓相似且焦點(diǎn)在軸上、短半軸長為的橢圓的標(biāo)準(zhǔn)方程;若在橢圓上存在兩點(diǎn)、關(guān)于直線對稱,求實(shí)數(shù)的取值范圍;

(2)從外層橢圓頂點(diǎn)A、B向內(nèi)層橢圓引切線ACBD,設(shè)內(nèi)層橢圓方程為+=1 (ab0)ACBD的斜率之積為-,求橢圓的離心率。

查看答案和解析>>

同步練習(xí)冊答案