精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,某化工集團在一條河流的上、下游分別建有甲、乙兩家化工廠,其中甲廠每天向河道內排放污水2萬m3,每天流過甲廠的河水流量是500萬m3(含甲廠排放的污水);乙廠每天向河道內排放污水1.4萬m3,每天流過乙廠的河水流量是700萬m3(含乙廠排放的污水).由于兩廠之間有一條支流的作用,使得甲廠排放的污水在流到乙廠時,有20%可自然凈化.假設工廠排放的污水能迅速與河水混合,且甲廠上游及支流均無污水排放.根據環(huán)保部門的要求,整個河流中污水含量不能超過0.2%,為此,甲、乙兩個工廠都必須各自處理一部分污水.
(Ⅰ)設甲、乙兩個化工廠每天各自處理的污水分別為x、y萬m3,試根據環(huán)保部門的要求寫出x、y所滿足的所有條件;
(Ⅱ)已知甲廠處理污水的成本是1200元/萬m3,乙廠處理污水的成本是1000元/萬m3,在滿足環(huán)保部門要求的條件下,甲、乙兩個化工廠每天應分別各自處理污水多少萬m3,才能使這兩個工廠處理污水的總費用最小?最小總費用是多少元?
分析:利用線性規(guī)劃的思想方法解決某些實際問題屬于直線方程的一個應用.本題主要考查找出約束條件與目標函數,準確地描畫可行域,再利用圖形直線求得滿足題設的最優(yōu)解.(1)要寫出x、y所滿足的所有條件,我們需要考慮如下幾個方面①處理量不能超過自己的排放量②甲廠的污水在自然凈化后不能超過0.2%③甲、乙兩廠的污水排放量在河水中比例不能超過0.2%.(2)由甲廠處理污水的成本是1200元/萬m3,乙廠處理污水的成本是1000元/萬m3,我們可以列出目標函數,然后畫出滿足(1)中約束條件的可行域,然后利用平移直線法,易求出最優(yōu)解.
解答:精英家教網解:(Ⅰ)據題意,x、y所滿足的所有條件是
2-x
500
0.2
100
0.8(2-x)+(1.4-y)
700
0.2
100
0≤x≤2
0≤y≤1.4
,即
4x+5y≥8
1≤x≤2
0≤y≤1.4


(Ⅱ)設甲、乙兩廠處理污水的總費用為z元,
則目標函數z=1200x+1000y=200(6x+5y).
作可行域,如圖平移直線l:6x+5y=0,當直線經過點A(1,0.8)時,
z取最大值,此時z=1200×1+1000×0.8=2000(元).
故甲、乙兩廠每天應分別處理1萬m3、0.8萬m3污水,
才能使兩廠處理污水的總費用最小,且最小總費用是2000元.
點評:用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標函數是關鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數.然后將可行域各角點的值一一代入,最后比較,即可得到目標函數的最優(yōu)解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,某化工集團在一條河流的上、下游分別建有甲、乙兩家化工廠,其中甲廠每天向河道內排放污水2萬m3,每天流過甲廠的河水流量是500萬m3(含甲廠排放的污水);乙廠每天向河道內排放污水1.4萬m3,每天流過乙廠的河水流量是700萬m3(含乙廠排放的

污水).由于兩廠之間有一條支流的作用,使得甲廠排放的污水在流到乙廠時,有20%可自然凈化.假設工廠排放的污水能迅速與河水混合,且甲廠上游及支流均無污水排放. 根據環(huán)保部門的要求,整個河流中污水含量不能超過0.2%,為此,甲、乙兩個工廠都必須各自處理一部分污水.

(Ⅰ)設甲、乙兩個化工廠每天各自處理的污水分別為x、y萬m3,試根據環(huán)保部門的要求寫出x、y所滿足的所有條件;

(Ⅱ)已知甲廠處理污水的成本是1200元/萬m3,乙廠處理污水的成本是1000元/萬m3,在滿足環(huán)保部門要求的條件下,甲、乙兩個化工廠每天應分別各自處理污水多少萬m3,才能使這兩個工廠處理污水的總費用最。孔钚】傎M用是多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,某化工集團在一條河流的上、下游分別建有甲、乙兩家化工廠,其中甲廠每天向河道內排放污水2萬m3,每天流過甲廠的河水流量是500萬m3(含甲廠排放的污水);乙廠每天向河道內排放污水1.4萬m3,每天流過乙廠的河水流量是700萬m3(含乙廠排放的污水).由于兩廠之間有一條支流的作用,使得甲廠排放的污水在流到乙廠時,有20%可自然凈化.假設工廠排放的污水能迅速與河水混合,且甲廠上游及支流均無污水排放. 根據環(huán)保部門的要求,整個河流中污水含量不能超過0.2%,為此,甲、乙兩個工廠都必須各自處理一部分污水.

(Ⅰ)設甲、乙兩個化工廠每天各自處理的污水分別為x、y萬m3,試根據環(huán)保部門的要求寫出x、y所滿足的所有條件;

(Ⅱ)已知甲廠處理污水的成本是1200元/萬m3,乙廠處理污水的成本是1000元/萬m3,在滿足環(huán)保部門要求的條件下,甲、乙兩個化工廠每天應分別各自處理污水多少萬m3,才能使這兩個工廠處理污水的總費用最?最小總費用是多少元?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,某化工集團在一條河流的上、下游分別建有甲、乙兩家化工廠,其中甲廠每天向河道內排放污水2萬m3,每天流過甲廠的河水流量是500萬m3(含甲廠排放的污水);乙廠每天向河道內排放污水1.4萬m3,每天流過乙廠的河水流量是700萬m3(含乙廠排放的污水).由于兩廠之間有一條支流的作用,使得甲廠排放的污水在流到乙廠時,有20%可自然凈化.假設工廠排放的污水能迅速與河水混合,且甲廠上游及支流均無污水排放.根據環(huán)保部門的要求,整個河流中污水含量不能超過0.2%,為此,甲、乙兩個工廠都必須各自處理一部分污水.
(Ⅰ)設甲、乙兩個化工廠每天各自處理的污水分別為x、y萬m3,試根據環(huán)保部門的要求寫出x、y所滿足的所有條件;
(Ⅱ)已知甲廠處理污水的成本是1200元/萬m3,乙廠處理污水的成本是1000元/萬m3,在滿足環(huán)保部門要求的條件下,甲、乙兩個化工廠每天應分別各自處理污水多少萬m3,才能使這兩個工廠處理污水的總費用最。孔钚】傎M用是多少元?
精英家教網

查看答案和解析>>

科目:高中數學 來源:2010-2011學年廣東省深圳市寶安區(qū)高三(上)調研數學試卷(理科)(解析版) 題型:解答題

如圖,某化工集團在一條河流的上、下游分別建有甲、乙兩家化工廠,其中甲廠每天向河道內排放污水2萬m3,每天流過甲廠的河水流量是500萬m3(含甲廠排放的污水);乙廠每天向河道內排放污水1.4萬m3,每天流過乙廠的河水流量是700萬m3(含乙廠排放的污水).由于兩廠之間有一條支流的作用,使得甲廠排放的污水在流到乙廠時,有20%可自然凈化.假設工廠排放的污水能迅速與河水混合,且甲廠上游及支流均無污水排放.根據環(huán)保部門的要求,整個河流中污水含量不能超過0.2%,為此,甲、乙兩個工廠都必須各自處理一部分污水.
(Ⅰ)設甲、乙兩個化工廠每天各自處理的污水分別為x、y萬m3,試根據環(huán)保部門的要求寫出x、y所滿足的所有條件;
(Ⅱ)已知甲廠處理污水的成本是1200元/萬m3,乙廠處理污水的成本是1000元/萬m3,在滿足環(huán)保部門要求的條件下,甲、乙兩個化工廠每天應分別各自處理污水多少萬m3,才能使這兩個工廠處理污水的總費用最小?最小總費用是多少元?

查看答案和解析>>

同步練習冊答案