((本小題滿分12分)
如圖,已知四棱錐PABCD的底面是直角梯形,∠ABC=∠BCD=90oABBCPBPC=2CD=2,側(cè)面PBC⊥底面ABCDOBC的中點(diǎn),AOBDE.

(1)求證:PABD
(2)求二面角PDCB的大小.

解法一:(1)證明:∵PB=PC,O為BC的中點(diǎn),
∴PO⊥BC.
又∵平面PBC⊥平面ABCD,
平面PBC∩平面ABCD=BC,
∴PO⊥平面ABCD.在梯形ABCD中,
可得Rt△ABO≌Rt△BCD.
∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90o,
即AO⊥BD.
∵PA在平面ABCD內(nèi)的射影為AO,∴PA⊥BD…………………………6分
(2)解:∵DC⊥BC,且平面PBC⊥平面ABCD,
∴DC⊥平面PBC.
∵PC平面PBC,∴DC⊥PC.
∴∠PCB為二面角P—DC—B的平面角.
∵△PCB是等邊三角形,
∴∠PCB=60o,即面角P—DC—B的大小為60o……………………12分
解法二:(1)因?yàn)椤鱌BC是等邊三角形,O是BC的中點(diǎn),由側(cè)面PBC⊥底面ABCD得PO⊥底面ABCD.以BC中點(diǎn)O為原點(diǎn),以BC所在直線為x軸,過(guò)點(diǎn)與AB平行的直線為y軸,建立如圖所示的空間直角坐標(biāo)系O—xyz.

(1)證明:在直角梯形中,AB="BC=2. "
CD=1,在等邊三角形中PBC中,PO=.
∴A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,).
=(-2,-1,0),=(1,-2,-).
·=(-2)×1+(-1)×(-2)+0×(-)=0,
,即PA⊥BD………………………………………………6分
(2)解:取PC的中點(diǎn)N,則N(-,0,).于是=(-,0,).
∵C(-1,0,0),∴=(0,1,0),=(1,0,),
·=(-)×1+0×0+×=0
⊥平面PDC.顯然=(0,0,),且⊥平面ABCD.
,所夾角等于所求二面角的平面角.
·=(-)×0+0×0+×=
||=,||=,∴cos<,>=.
∴二面角P—DC—B的大小為60o………………………………12分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案