10.已知函數(shù)y=f(x)為R上的奇函數(shù),其零點(diǎn)為x1,x2,…,x2017,則x1+x2+…+x2017=0.

分析 由題意和奇函數(shù)的性質(zhì)確定0是一個(gè)零點(diǎn),根據(jù)奇函數(shù)的對(duì)稱性:得出其他非0的零點(diǎn)關(guān)于原點(diǎn)對(duì)稱,從而得出所有零點(diǎn)的和.

解答 解:∵f(x)是R上的奇函數(shù),
∴f(0)=0,則0是函數(shù)y=f(x)的零點(diǎn).
∵奇函數(shù)的其他2016個(gè)非0的零點(diǎn)關(guān)于原點(diǎn)對(duì)稱,
∴x1+x2+…+x2017=0,
故答案為:0.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性的性質(zhì),以及函數(shù)的零點(diǎn)的應(yīng)用,考查分析問題和解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某重點(diǎn)高中擬把學(xué)校打造成新型示范高中,為此制定了很多新的規(guī)章制度,新規(guī)章制度實(shí)施一段時(shí)間后,學(xué)校就新規(guī)章制度的認(rèn)知程度隨機(jī)抽取100名學(xué)生進(jìn)行問卷調(diào)查,調(diào)查卷共有20個(gè)問題,每個(gè)問題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名學(xué)生的成績(jī)都在[75,100]內(nèi),按成績(jī)分成5組:第1組[75,80),第2組[80,85)第3組[85,90),第4組[90,95),第5組[95,100],繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙上分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對(duì)新規(guī)取章制度作深入學(xué)習(xí).
(1)求這100人的平均得分(同-組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)求第3,4,5組分別選取的人數(shù);
(3)若甲、乙、丙都被選取對(duì)新規(guī)章制度作深人學(xué)習(xí),之后要從這6人隨機(jī)選取人2再全面考查他們對(duì)新規(guī)章制度的認(rèn)知程度,求甲、乙、丙這3人至多有一人被選取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在正方體ABCD-A1B1C1D1中.
(1)求D1B與平面ABCD所成的角的正弦;
(2)求二面角B1-AC-B的正切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.表面積為3π的圓錐的側(cè)面展開圖是一個(gè)半圓,則該圓錐的底面圓半徑為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2$\sqrt{5}$,且雙曲線的一條漸近線與直線2x+y=0垂直,則雙曲線的頂點(diǎn)到漸近線的距離為( 。
A.1B.2C.$\frac{2\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)為A,P($\frac{4\sqrt{2}}{3}$,$\frac{3}$)是橢圓C上的一點(diǎn),以AP為直徑的圓經(jīng)過橢圓C的右焦點(diǎn)F2
(1)求橢圓C的方程;
(2)設(shè)F1為橢圓C的左焦點(diǎn),過右焦點(diǎn)F2的直線l與橢圓C交于不同兩點(diǎn)M、N,記△F1MN的內(nèi)切圓的面積為S,求當(dāng)S取最大值時(shí)直線l的方程,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤2\\ 2x+y≥0\\ 3x-y-2≤0\end{array}\right.$,則$\frac{y}{1-x}$的取值范圍為( 。
A.$({-∞,-\frac{4}{3}}]$B.$({-∞,\frac{3}{4}})$C.$[{-\frac{3}{4},+∞})$D.$[{-\frac{4}{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{|x-2y+2|≤2}\\{|x+3y-8|≤2}\end{array}\right.$,則z=x+2y的最大值為( 。
A.4B.8C.$\frac{24}{5}$D.$\frac{36}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.i為虛數(shù)單位,復(fù)數(shù)$\frac{2i}{1-i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案