【題目】已知函數(shù)f(x)=﹣x2+ax+b的值域?yàn)椋ī仭蓿?],若關(guān)x的不等式 的解集為(m﹣4,m+1),則實(shí)數(shù)c的值為

【答案】21
【解析】解:由題意,函數(shù)f(x)=﹣x2+ax+b的值域?yàn)椋ī仭蓿?],∴△=a2+4b=0 ①;
由不等式 化簡(jiǎn):x2﹣ax﹣b﹣ ﹣1<0
m﹣4與m+1為方程x2﹣ax﹣b﹣ ﹣1=0的兩根;
m﹣4+m+1=a ②;
(m﹣4)(m+1)=﹣b﹣ ﹣1 ③;
函數(shù)y=x2﹣ax﹣b﹣ ﹣1的對(duì)稱軸為x= = = ;
所以 a=5;
由①②知:m=4,b=﹣ ;
由③知:c=21
所以答案是:21
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖所示,正方形與矩形所在平面互相垂直,

(1)若點(diǎn),分別為,的中點(diǎn),求證:平面平面

(2)在線段上是否存在一點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知(a4﹣1)3+2016(a4﹣1)=1,(a2013﹣1)3+2016(a2013﹣1)=﹣1,則下列結(jié)論正確的是(
A.S2016=﹣2016,a2013>a4
B.S2016=2016,a2013>a4
C.S2016=﹣2016,a2013<a4
D.S2016=2016,a2013<a4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且 =
(1)求角A的大;
(2)若a=4,求 b﹣c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(1)=0,當(dāng)x<0時(shí),xf′(x)+f(x)>0,則使得f(x)<0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式
l+2+3+…+n= n(n+l);
l+3+6+…+ n(n+1)= n(n+1)(n+2);
1+4+10+… n(n+1)(n+2)= n(n+1)(n+2)(n+3);
可以推測(cè),1+5+15+…+ n(n+1)(n+2)(n+3)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:

(1)求全班人數(shù)及分?jǐn)?shù)在之間的頻數(shù);

(2)估計(jì)該班的平均分?jǐn)?shù),并計(jì)算頻率分布直方圖中間的矩形的高;

(3)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,ADBC,AD=AB=DC=BC=1,EPC的中點(diǎn),面PACABCD

(1)證明:ED∥面PAB;

(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè), .

(1)若,求的單調(diào)區(qū)間;

(2)討論在區(qū)間上的極值點(diǎn)個(gè)數(shù);

(3)是否存在,使得在區(qū)間上與軸相切?若存在,求出所有的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案