曲線上兩點(diǎn),若曲線上一點(diǎn)處的切線恰好平行于弦,則點(diǎn)的坐標(biāo)為(  )
A.(1,3)B.(3,3)C.(6,-12)D.(2,4)
B

試題分析:設(shè)P的坐標(biāo)為,∵曲線在P處的切線平行于弦AB,∴
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(其中),為f(x)的導(dǎo)函數(shù).
(1)求證:曲線y=在點(diǎn)(1,)處的切線不過點(diǎn)(2,0);
(2)若在區(qū)間中存在,使得,求的取值范圍;
(3)若,試證明:對(duì)任意恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點(diǎn)的切線斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點(diǎn)的連線的斜率小于l,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=ln x-f′(-1)x2+3x-4,則f′(1)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

處有極大值,則常數(shù)的值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:f′′(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f′′(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有′拐點(diǎn)′;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且‘拐點(diǎn)’就是對(duì)稱中心”.請(qǐng)你將這一發(fā)現(xiàn)作為條件,則函數(shù)f(x)=x3-3x2+3x的對(duì)稱中心為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=ex-ax-2.
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當(dāng)x>0時(shí),(x-k)f′(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且在點(diǎn)
處的切線方程為.
(1)求的值;
(2)若函數(shù)在區(qū)間內(nèi)有且僅有一個(gè)極值點(diǎn),求的取值范圍;  
(3)設(shè)為兩曲線,的交點(diǎn),且兩曲線在交點(diǎn)處的切線分別為.若取,試判斷當(dāng)直線軸圍成等腰三角形時(shí)值的個(gè)數(shù)并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)圖象與直線相切,切點(diǎn)橫坐標(biāo)為.
(1)求函數(shù)的表達(dá)式和直線的方程;(2)求函數(shù)的單調(diào)區(qū)間;
(3)若不等式對(duì)定義域內(nèi)的任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案