(本小題滿分14分)如圖橢圓的上頂點為A,左頂點為B, F為右焦點, 過F作平行于AB的直線交橢圓于C、D兩點. 作平行四邊形OCED, E恰在橢圓上。

(Ⅰ)求橢圓的離心率;
(Ⅱ)若平行四邊形OCED的面積為, 求橢圓的方程.

(Ⅰ)(Ⅱ)

解析試題分析:解∵焦點為F(c, 0), AB斜率為, 故CD方程為y=(x-c). 于橢圓聯(lián)立后消去y得2x2-2cx-b2="0." ∵CD的中點為G(), 點E(c, -)在橢圓上,
∴將E(c, -)代入橢圓方程并整理得2c2=a2, ∴e =.
(Ⅱ)由(Ⅰ)知CD的方程為y=(x-c),  b="c," a=c.
與橢圓聯(lián)立消去y得2x2-2cx-c2=0.
∵平行四邊形OCED的面積為S=c|yC-yD|=c
=c, ∴c=, a="2," b=. 故橢圓方程為
考點:離心率及直線與橢圓的位置關(guān)系
點評:求離心率關(guān)鍵是找到關(guān)于的齊次方程

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)直線l:y=kx+1與雙曲線C:的右支交于不同的兩點A,B
(Ⅰ)求實數(shù)k的取值范圍;
(Ⅱ)是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如果兩個橢圓的離心率相等,那么就稱這兩個橢圓相似.已知橢圓與橢圓相似,且橢圓的一個短軸端點是拋物線的焦點.
(Ⅰ)試求橢圓的標準方程;
(Ⅱ)設(shè)橢圓的中心在原點,對稱軸在坐標軸上,直線與橢圓交于兩點,且與橢圓交于兩點.若線段與線段的中點重合,試判斷橢圓與橢圓是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知橢圓的焦點坐標為,,且短軸一頂點B滿足
(Ⅰ) 求橢圓的方程;
(Ⅱ)過的直線l與橢圓交于不同的兩點M、N,則△MN的內(nèi)切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知橢圓,其左準線為,右準線為,拋物線以坐標原點為頂點,為準線,兩點.
(1)求拋物線的標準方程;
(2)求線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知雙曲線與橢圓有相同焦點,且經(jīng)過點
求該雙曲線方程,并求出其離心率、漸近線方程,準線方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分) 如圖,是離心率為的橢圓,
()的左、右焦點,直線將線段分成兩段,其長度之比為1 : 3.設(shè)上的兩個動點,線段的中點在直線上,線段的中垂線與交于兩點.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點,使以為直徑的圓經(jīng)過點,若存在,求出點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點. ①若線段中點的
橫坐標為,求斜率的值;②若點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知拋物線過點.(1)求拋物線的方程,并求其準線方程;
(2)是否存在平行于為坐標原點)的直線,使得直線與拋物線有公共點,且直線
距離等于?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案