為貫徹“激情工作,快樂生活”的理念,某單位在工作之余舉行趣味知識(shí)有獎(jiǎng)競(jìng)賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選題答題的機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止其初賽的比賽,答對(duì)3題者直接進(jìn)入決賽,答錯(cuò)3題者則被淘汰.已知選手甲答題的正確率為.
(1)求選手甲答題次數(shù)不超過4次可進(jìn)入決賽的概率;
(2)設(shè)選手甲在初賽中答題的個(gè)數(shù)為X,試寫出X的分布列,并求X的數(shù)學(xué)期望.
(1)(2)
(1)選手甲答3道題進(jìn)入決賽的概率為3
選手甲答4道題進(jìn)入決賽的概率為
2··.
∴選手甲答題次數(shù)不超過4次可進(jìn)入決賽的概率P.
(2)依題意,X的可能取值為3,4,5,則有P(X=3)=33P(X=4)=2··2··;P(X=5)=2·2;
因此,分布列是:
X
3
4
5
P



E(X)=3×+4×+5×.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)為隨機(jī)變量,從棱長為1的正方體ABCD-A1B1C1D1的八個(gè)頂點(diǎn)中任取四個(gè)點(diǎn),當(dāng)四點(diǎn)共面時(shí),=0,當(dāng)四點(diǎn)不共面時(shí),的值為四點(diǎn)組成的四面體的體積.
(1)求概率P(=0);
(2)求的分布列,并求其數(shù)學(xué)期望E ().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲有一只放有x個(gè)紅球,y個(gè)黃球,z個(gè)白球的箱子,乙有一只放有3個(gè)紅球,2個(gè)黃球,1個(gè)白球的箱子,
(1)兩個(gè)各自從自己的箱子中任取一球,規(guī)定:當(dāng)兩球同色時(shí)甲勝,異色時(shí)乙勝。若用x、y、z表示甲勝的概率;
2)在(1)下又規(guī)定當(dāng)甲取紅、黃、白球而勝的得分分別為1、2、3分,否則得0分,求甲得分的期望的最大值及此時(shí)x、y、z的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校學(xué)習(xí)小組開展“學(xué)生語文成績與外語成績的關(guān)系”的課題研究,對(duì)該校高二年級(jí)800名學(xué)生上學(xué)期期末語文和外語成績,按優(yōu)秀和不優(yōu)秀分類得結(jié)果:語文和外語都優(yōu)秀的有60人,語文成績優(yōu)秀但外語不優(yōu)秀的有140人,外語成績優(yōu)秀但語文不優(yōu)秀的有100人.
(Ⅰ)能否在犯錯(cuò)概率不超過0.001的前提下認(rèn)為該校學(xué)生的語文成績與外語成績有關(guān)系?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,從該校高二年級(jí)學(xué)生成績中,有放回地隨機(jī)抽取3名學(xué)生的成績,記抽取的3 個(gè)成績中語文,外語兩科成績至少有一科優(yōu)秀的個(gè)數(shù)為X ,求X的分布列和期望E(x).

0.010
0.005
0.001

6.635
7.879
10.828
附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

袋中有5只紅球,3只黑球,現(xiàn)從袋中隨機(jī)取出4只球,設(shè)取到一只紅球得2分,取到一只黑球得1分,則得分ξ的數(shù)學(xué)期望Eξ=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有兩臺(tái)自動(dòng)包裝機(jī)甲與乙,包裝質(zhì)量分別為隨機(jī)變量X1,X2,已知E(X1)=E(X2),V(X1)>V(X2),則自動(dòng)包裝機(jī)________的質(zhì)量好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若隨機(jī)變量ξ的分布列為:P(ξ=m)=,P(ξ=n)=a.若E(ξ)=2,則D(ξ)的最小值等于   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校校慶,各屆校友紛至沓來,某班共來了n位校友(n>8且n∈N*),其中女校友6位,組委會(huì)對(duì)這n位校友登記制作了一份校友名單,現(xiàn)隨機(jī)從中選出2位校友代表,若選出的2位校友是一男一女,則稱為“最佳組合”.
(1)若隨機(jī)選出的2位校友代表為“最佳組合”的概率不小于,求n的最大值;
(2)當(dāng)n=12時(shí),設(shè)選出的2位校友代表中女校友人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)某校舉行環(huán)保知識(shí)大獎(jiǎng)賽,比賽分初賽和決賽兩部分,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選題答題的機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止其初賽的比賽,答對(duì)3題者直接進(jìn)入決賽,答錯(cuò)3題者則被淘汰,已知選手甲答題連續(xù)兩次答錯(cuò)的概率為,(已知甲回答每個(gè)問題的正確率相同,并且相互之間沒有影響。)(I)求甲選手回答一個(gè)問題的正確率;(Ⅱ)求選手甲可進(jìn)入決賽的概率;(Ⅲ)設(shè)選手甲在初賽中答題的個(gè)數(shù)為,試寫出的分布列,并求的數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊(cè)答案