【題目】如圖,在三棱柱中, 底面, , , , 是棱上一點(diǎn).
(I)求證: .
(II)若, 分別是, 的中點(diǎn),求證: 平面.
(III)若二面角的大小為,求線段的長(zhǎng).
【答案】(1)見(jiàn)解析(2)見(jiàn)解析(3)
【解析】試題分析:(1)先證明面可得;(2)連接交于點(diǎn),根據(jù)幾何知識(shí)可得可得,根據(jù)線面平行的判定定理可得平面;(3)建立空間直角坐標(biāo)系,利用向量,通過(guò)計(jì)算求的長(zhǎng)。
試題解析:(I)∵平面, 面,
∴.
∵, ,
∴中, ,
∴.
∵,
∴面.
∵面,
∴.
(II)連接交于點(diǎn).
∵四邊形是平行四邊形,
∴是的中點(diǎn).
又∵, 分別是, 的中點(diǎn),
∴,且,
∴四邊形是平行四邊形,
∴.
又平面, 面,
∴平面.
(III)∵,且平面,
∴, , 兩兩垂直。
以為原點(diǎn), , , 分別為軸, 軸, 軸建立空間直角坐標(biāo)系.
設(shè),則, , , ,
∴, , .
設(shè)平面的法向量為,
故, ,
則有,令,則,
又平面的法向量為.
∵二面角的大小為,
∴,
解得,即,
,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為, 也是拋物線的焦點(diǎn),點(diǎn)為與在第一象限的交點(diǎn),且.
(1)求的方程;
(2)平面上的點(diǎn)滿足,直線,且與交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), ,其中是實(shí)數(shù).
(1)解關(guān)于的不等式.
(2)若,求關(guān)于的方程實(shí)根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓: 過(guò)圓上任意一點(diǎn)向軸引垂線垂足為(點(diǎn)、可重合),點(diǎn)為的中點(diǎn).
(1)求的軌跡方程;
(2)若點(diǎn)的軌跡方程為曲線,不過(guò)原點(diǎn)的直線與曲線交于、兩點(diǎn),滿足直線, , 的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,直線過(guò)拋物線焦點(diǎn),且與拋物線交于, 兩點(diǎn),以線段為直徑的圓與拋物線準(zhǔn)線的位置關(guān)系是( )
A. 相離 B. 相交 C. 相切 D. 不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.
(1)求橢圓的方程式;
(2)已知?jiǎng)又本與橢圓相交于兩點(diǎn).
①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;
②已知點(diǎn),求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓: ,直線過(guò)定點(diǎn).
(Ⅰ)若與圓相切,求的方程;
(Ⅱ)若與圓相交于、兩點(diǎn),求的面積的最大值,并求此時(shí)直線的方程.(其中點(diǎn)是圓的圓心)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com