在△ABC中,
(Ⅰ)求AB的值.
(Ⅱ)求的值.
【答案】分析:(Ⅰ)由BC,AC及sinC=2sinA,利用正弦定理即可求出AB的值;
(Ⅱ)由余弦定理表示出出cosA,把BC,AC及AB的值代入求出cosA的值,由A為三角形的內(nèi)角,利用同角三角函數(shù)間的基本關(guān)系求出sinA的值,從而利用二倍角的正弦、余弦函數(shù)公式分別求出sin2A和cos2A的值,把所求式子利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn)后,將sin2A和cos2A的值代入即可求出值.
解答:解:(Ⅰ)在△ABC中,,
則根據(jù)正弦定理得:
;
(Ⅱ)在△ABC中,AB=2,BC=,AC=3,
∴根據(jù)余弦定理得:=
又A為三角形的內(nèi)角,則=,
從而,

點(diǎn)評(píng):此題屬于解三角形的題型,涉及的知識(shí)有:正弦定理,余弦定理,同角三角函數(shù)間的基本關(guān)系,二倍角的正弦、余弦函數(shù)公式,以及兩角和與差的正弦函數(shù)公式,熟練掌握公式及定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,S是該三角形的面積,已知向量
p
=(1,2sinA)
q
=(sinA,1+cosA)
,且滿足
p
q

(1)求角A的大;(2)若a=
3
,S=
3
3
4
,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,滿足
AB
AC
,|
AB
|=3,|
AC
|=4
,點(diǎn)M在線段BC上.
(1)M為BC中點(diǎn),求
AM
BC
的值;
(2)若|
AM
|=
6
5
5
,求BM:BC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若sinB+cosB=
3
-1
2

(1)求角B的大;
(2)又若tanA+tanC=3-
3
,且∠A>∠C,求角A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知sinAsinBcosC=sinAsinCcosB+sinBsinCcosA,若a、b、c分別是角A、B、C所對(duì)的邊,則
abc2
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若A=
C
2
,求證:
1
3
c-a
b
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案