已知函數(shù)f(x)=sin(2x+
π
3
)
,給出下列命題:①f(x)的圖象可以看作是由y=sin2x的圖象向左平移
π
6
個單位而得;②f(x)的圖象可以看作是由y=sin(x+
π
6
)的圖象保持縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的
1
2
而得;③函數(shù)y=|f(x)|的最小正周期為
π
2
;④函數(shù)y=|f(x)|是偶函數(shù).其中正確的結(jié)論是:
①③
①③
.(寫出你認(rèn)為正確的所有結(jié)論的序號)
分析:利用三角函數(shù)的圖象的平移原則,左加右減,上加下減,以及伸縮變換,判斷①②的正誤,求出函數(shù)的周期判斷③的正誤;利用函數(shù)的奇偶性判斷④的正誤;
解答:解::①由y=sin2x的圖象向左平移
π
6
個單位而得到f(x)=sin2(x+
π
6
)
=sin(2x+
π
3
)
;所以①正確;
②由y=sin(x+
π
6
)的圖象保持縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的
1
2
而得到f(x)=sin(2x+
π
6
)
的圖象,所以②不正確;
③函數(shù)y=|f(x)|,函數(shù)的圖象就是f(x)=sin(2x+
π
3
)
,x軸下部對稱到x軸的上部,
對稱中心在x軸,所以原函數(shù)的周期減半,最小正周期為
π
2
;③正確;
④函數(shù)y=|f(x)|=|sin(2x+
π
3
)|
,因為f(-x)=|sin(-2x+
π
3
)|
≠sin(2x+
π
3
)
,所以不是偶函數(shù).④不正確.
故答案為:①③.
點評:本題考查三角函數(shù)的圖象的平移變換,三角函數(shù)的基本性質(zhì),考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)
(Ⅰ)設(shè)非空集合S={x|m≤x≤l}滿足:當(dāng)x∈S時有x2∈S,給出下列四個結(jié)論:
①若m=2,則l=4
②若m=-
1
2
,則
1
4
≤l≤1

③若l=
1
2
,則-
2
2
≤m≤0
④若m=1,則S={1},
其中正確的結(jié)論為
②③④
②③④

(Ⅱ)已知函數(shù)f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若對于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,則b的取值范圍為
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正奇數(shù)列{2n-1}中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:
記aij是這個數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ)  求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)f(x)=
3x
3n
(其中x>0),設(shè)該數(shù)表的第n行的所有數(shù)之和為bn,
數(shù)列{f(bn)}的前n項和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•開封二模)已知函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)記△ABC的內(nèi)角A、B、C所對的邊長分別為a、b、c若f(A)=
3
2
,△ABC的面積S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黑龍江一模)已知函數(shù)f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC中,角A,B,C所對的邊長分別為a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃山模擬)已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數(shù)f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x
;
(Ⅲ)對一個實數(shù)集合M,若存在實數(shù)s,使得M中任何數(shù)都不超過s,則稱s是M的一個上界.已知e是無窮數(shù)列an=(1+
1
n
)n+a
所有項組成的集合的上界(其中e是自然對數(shù)的底數(shù)),求實數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案