12.已知f(x)=2x+3,且f(m)=6,則m等于$\frac{3}{2}$.

分析 直接利用函數(shù)的解析式列出方程,求解即可.

解答 解:f(x)=2x+3,且f(m)=6,
可得2m+3=6,則m=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點(diǎn)評 本題考查函數(shù)的解析式的應(yīng)用,函數(shù)的零點(diǎn)與方程的根的關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)在數(shù)列{an}中,a1=2,an+1=an+$\frac{1}{n(n+1)}$,求數(shù)列{an}的通項公式.
(2)若數(shù)列{an}滿足:a1=1,an+1=an+2n,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,已知動圓M過定點(diǎn)A(-$\sqrt{3}$,0),且與定圓B:(x-$\sqrt{3}$)2+y2=16相切,記動圓圓心M的軌跡為曲線C.
(1)求曲線C的方程;
(2)已知P,Q是曲線C上的動點(diǎn),且滿足直線OP,OQ的斜率乘積等于λ(λ常數(shù)).
設(shè)動點(diǎn)N(x0,y0)滿足$\overrightarrow{ON}$=m$\overrightarrow{OP}$+n$\overrightarrow{OQ}$(m,n∈R).
①若m=1,n=2,λ=-$\frac{1}{4}$,求證:x02+4y02為定值;
②是否存在定值λ,使得點(diǎn)N也在曲線C上,若存在,求出λ的值以及m,n滿足的條件;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=|x-a|-$\frac{3}{x}$+a-2有且僅有三個零點(diǎn),且它們成等差數(shù)列,則實數(shù)a的取值集合為{a|a=$\frac{5+3\sqrt{33}}{8}$或-$\frac{9}{5}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將1,2,3,…,12無重復(fù)地填在如圖的12個空格中,要求每一行的數(shù)從左到右逐漸增大,每一列的數(shù)從上到下逐漸增大,且5和6已經(jīng)填好,固定在圖中的位置上時,符合要求的填法共有9種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.判斷下列兩個集合之間的關(guān)系:
(1)A={…,-5,-3,-1,1,3,5,…},B={x|x=2m+1,m∈Z};
(2)C={x|x=2m-1,m∈Z},D=Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)全集U={x∈N*|x≤9},若∁U(A∪B)={1,3},A∩(∁UB)={2,4},則集合B={5,6,7,8,9}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知α為第一象限角,且$\frac{1+tanα}{1-tanα}$=3+2$\sqrt{2}$,則cosα=(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若集合A={x|(x+1)(x-1)=0},B={x|x2-2x+a=0},且A∪B=A,求實數(shù)a的取值的集合.

查看答案和解析>>

同步練習(xí)冊答案