函數(shù)f(x)=Asin(ωx+?)(其中A>0,ω>0,數(shù)學(xué)公式)的圖象如圖所示,為了得到y(tǒng)=2cos2x的圖象,則只要將f(x)的圖象)向________平移________個單位長度.

左    
分析:先根據(jù)圖象確定A的值,進而根據(jù)三角函數(shù)結(jié)果的點求出求?與ω的值,確定函數(shù)f(x)的解析式,然后根據(jù)誘導(dǎo)公式將函數(shù)化為余弦函數(shù),再平移即可得到結(jié)果.
解答:由圖象可知A=2,f(x)=2sin(ωx+?),
函數(shù)的圖象經(jīng)過(0,),(),
=2sin?,∴?=+2kπ或?=+2kπ(k∈Z)
∵|?|<,∴?=,
函數(shù)的圖象經(jīng)過(),
0=2sin(ω×),所以ω=2.
∴f(x)=2sin(2x+)=2sin(+2x-)=2cos(2x-
∴將函數(shù)f(x)向左平移可得到2cos[2(x+)-]=2cos2x
故答案為:左;
點評:本題主要考查根據(jù)圖象求函數(shù)解析式和方法和三角函數(shù)的平移變換.根據(jù)圖象求三角函數(shù)解析式時,一般先根據(jù)圖象確定A的值和最小正周期的值,進而求出w的值,再將特殊點代入求φ的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有兩個函數(shù)f(x)=asin(kx+
π
3
),g(x)=btan(kx-
π
3
)(k>0),它們的周期之和為
3
2
π
且f(
π
2
)=g(
π
2
),f(
π
4
)
=-
3
g(
π
4
)+1
求這兩個函數(shù),并求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,是函數(shù)f(x)=Asin(φx+φ)(其中A>0,φ>0,0<φ<π)的部分圖象,則其解析為
y=2sin(
1
2
x+
4
)
y=2sin(
1
2
x+
4
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的圖象與X軸的交點中,相鄰兩個交點之間的距離為
π
2
,且圖象上一個最低點為M(
3
,-2

(Ⅰ)求f(x)的解析式.
(Ⅱ)求函教f(x)單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
,x∈R)的圖象的一部分如圖所示:
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)圖象的對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ)+b的圖象如圖,則f(x)的解析式和S=f(0)+f(1)+f(2)+…+f(2008)的值分別為(  )

查看答案和解析>>

同步練習(xí)冊答案