分解因式x2-y2-3x-3y=
(x+y)(x-y-3)
(x+y)(x-y-3)
分析:根據(jù)前兩項(xiàng)與后兩項(xiàng)分別組合,再運(yùn)用平方差公式因式分解以及再提取公因式即可.
解答:解:x2-y2-3x-3y
=(x2-y2)-(3x+3y)
=(x-y)(x+y)-3(x+y)
=(x+y)(x-y-3).
故答案為:(x+y)(x-y-3).
點(diǎn)評:此題主要考查用分組分解法進(jìn)行因式分解.難點(diǎn)是采用兩兩分組還是三一分組.本題前兩項(xiàng)與后兩項(xiàng)分別組合再分解因式是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)分解因式:x2-2xy+y2+2x-2y-3.
(2)求sin30°-tan0°+ctg
π
4
-cos2
6
的值
,
(3)求函數(shù)y=
lg(25-5x)
x+1
的定義域.
(4)已知直圓錐體的底面半徑等于1cm,母線的長等于2cm,求它的體積.
(5)計(jì)算:10(2+
5
)-1-(
1
500
)-
1
2
+30(
125
9
)
1
2
(
5
3
)
1
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
(1)α,β表示平面,a,b,c表示直線,點(diǎn)M;若a?α,b?β,α∩β=c,a∩b=M,則M∈c;
(2)平面內(nèi)有兩個(gè)定點(diǎn)F1(0,3),F(xiàn)2(0-3)和一動點(diǎn)M,若||MF1|-|MF2||=2a(a>0)是定值,則點(diǎn)M的軌跡是雙曲線;
(3)在復(fù)數(shù)范圍內(nèi)分解因式:x2-3x+5=(x-
3+
11
i
2
)(x-
3-
11
i
2
)
;
(4)拋物線y2=12x上有一點(diǎn)P到其焦點(diǎn)的距離為6,則其坐標(biāo)為P(3,±6).
以上命題中所有正確的命題序號為
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)分解因式:x2-2xy+y2+2x-2y-3.
(2)求sin30°-tan0°+ctg
π
4
-cos2
6
的值

(3)求函數(shù)y=
lg(25-5x)
x+1
的定義域.
(4)已知直圓錐體的底面半徑等于1cm,母線的長等于2cm,求它的體積.
(5)計(jì)算:10(2+
5
)-1-(
1
500
)-
1
2
+30(
125
9
)
1
2
(
5
3
)
1
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出以下命題:
(1)α,β表示平面,a,b,c表示直線,點(diǎn)M;若a?α,b?β,α∩β=c,a∩b=M,則M∈c;
(2)平面內(nèi)有兩個(gè)定點(diǎn)F1(0,3),F(xiàn)2(0-3)和一動點(diǎn)M,若||MF1|-|MF2||=2a(a>0)是定值,則點(diǎn)M的軌跡是雙曲線;
(3)在復(fù)數(shù)范圍內(nèi)分解因式:x2-3x+5=(x-
3+
11
i
2
)(x-
3-
11
i
2
)
;
(4)拋物線y2=12x上有一點(diǎn)P到其焦點(diǎn)的距離為6,則其坐標(biāo)為P(3,±6).
以上命題中所有正確的命題序號為______.

查看答案和解析>>

同步練習(xí)冊答案