18.若函數(shù)y=f(x)的值域是[2,3],則函數(shù)g(x)=1-2f(3x+4)的值域是( 。
A.[2,3]B.[4,6]C.[-5,-3]D.[-6,-4]

分析 利用復(fù)合函數(shù)的性質(zhì)進(jìn)行求解即可.

解答 解:∵f(x)的值域是[2,3],即2≤f(x)≤3,
根據(jù)復(fù)合函數(shù)的性質(zhì):
∴f(3x+4)的值域是[2,3],即2≤f(3x+4)≤3,
那么:2f(3x+4)的值域是[4,6],即4≤2f(3x+4)≤6,
所以:g(x)=1-2f(3x+4)的值域[-5,-3]
故選:C.

點(diǎn)評 本題考查了復(fù)合函數(shù)的值域的問題.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,0),若向量$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{c}$=(1,-2)垂直,則實(shí)數(shù)λ等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$為奇函數(shù),則實(shí)數(shù)a的值為1或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|<$\frac{π}{2}$.
(1)若sin$\frac{3π}{4}$sinφ-cos$\frac{π}{4}$cosφ=0,求φ的值;
(2)在(1)的條件下,函數(shù)f(x)圖象相鄰兩對稱軸之間的距離為$\frac{π}{3}$,求f(x)的解析式;
(3)在(2)條件下,將函數(shù)f(x)左移m個單位后得到偶函數(shù)時,求最小正實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a,b∈R,比較a2+b2與ab+a+b-1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列不等的解集
(1)求不等式$\frac{|x+1|}{|x+2|}$≥1的實(shí)數(shù)解;
(2)解關(guān)于x的不等式$\frac{a(x-1)}{x-2}$>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖所示的莖葉圖表示甲、乙兩人在5次綜合測評中的成績,其中一個數(shù)字被污損,則甲的平均成績不低于乙的平均成績的概率為$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬元)之間有如表對應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)畫出散點(diǎn)圖;
(2)求線性回歸方程;
(3)預(yù)測當(dāng)廣告費(fèi)支出7(百萬元)時的銷售額.
參考公式:用最小二乘法求線性回歸方程,其中系數(shù)$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{{\sqrt{1-{x^2}}}}{{2-\left|{x+2}\right|}}$是奇函數(shù)(“奇”,“偶”,“非奇非偶”中選一合適的填空).

查看答案和解析>>

同步練習(xí)冊答案