Loading [MathJax]/jax/output/CommonHTML/jax.js
19.定義函數(shù)f(x)={x•{x}},其中{x}表示不小于x的最小整數(shù),如{1.2}=2,{-2.6}=-2.當(dāng)x∈(0,n](n∈N*)時(shí),函數(shù)f(x)的值域記為An,記An中元素的個(gè)數(shù)為an,則1a1+1a2++1a10=2011

分析 推導(dǎo)出an=an-1+n,an-an-1=n,從而利用累加法得到an-a1=n1n+22,進(jìn)而得到1an=2nn+1=2(1n1n+1),由此能求出1a1+1a2++1a10

解答 解:由題意知:當(dāng)n=1時(shí),∵x∈(0,1],∴{x}=1,∴{x{x}}=1,∴A1={1},a1=1;
當(dāng)n=2時(shí),∵x∈(1,2],∴{x}=2,∴{x{x}}∈(2,4],∴A2={1,3,4},a2=3;
當(dāng)n=3時(shí),∵x∈(2,3],∴{x}=3,∴{x{x}}={3x}∈(6,9],∴A3={1,3,4,7,8,9},a3=6;
當(dāng)n=4時(shí),∵x∈(3,4],∴{x}=4,∴{x{x}}={4x}∈(12,16],
所以A4={1,3,4,7,8,9,13,14,15,16},a4=10;
當(dāng)n=5時(shí),∵x∈(4,5],∴{x}=5,∴{x{x}}={5x}∈(20,25],
∴A5={1,3,4,7,8,9,13,14,15,16,21,22,23,24,25},a5=15,
由此類(lèi)推:an=an-1+n,∴an-an-1=n,
即a2-a1=2,a3-a2=3,a4-a3=4,…,an-an-1=n,
以上n-1個(gè)式子相加得,an-a1=n1n+22,
解得an=nn+12,∴1an=2nn+1=2(1n1n+1),
1a1+1a2++1a10=2(1-12+1213++110111)=2(1-111)=2011
故答案為:2011

點(diǎn)評(píng) 本題考查數(shù)列的前10項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意累加法和裂項(xiàng)求和法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)且斜率為2的直線與C交于A、B兩點(diǎn),以AB為直徑的圓與C的準(zhǔn)線有公共點(diǎn)M,若點(diǎn)M的縱坐標(biāo)為2,則p的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=cos2ωx-2cos2(ωx+π4)(ω>0)的最小正周期T=π.
(Ⅰ)當(dāng)x[0π2]時(shí),求f(x)的值域;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(C)=0,acosB+bcosA=12c2,a=2,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)函數(shù)f(x)={4xx0|log4x|x0,則方程f(x)=14的解集為{-1,222}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.?dāng)?shù)列2,5,11,20,32,x,…中的x等于( �。�
A.28B.32C.33D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.一種擲硬幣走跳棋的游戲:棋盤(pán)上有第0、1、2、…、100,共101點(diǎn),一枚棋子開(kāi)始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若硬幣出現(xiàn)正面則棋子向前跳動(dòng)一站,出現(xiàn)反面則向前跳動(dòng)兩站,直到棋子跳到第99站(獲勝)或第100站(失�。⿻r(shí),游戲結(jié)束,已知硬幣出現(xiàn)正、反面的概率相同,設(shè)棋子跳到第n站時(shí)的概率為Pn
(1)求P1、P2、P3;
(2)設(shè)an=Pn-Pn-1(1≤n≤100),求證:數(shù)列{an}是等比數(shù)列;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在極坐標(biāo)系中,點(diǎn)A(2,π6)與B(2,-π6)之間的距離為( �。�
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.f(x)為奇函數(shù).當(dāng)x>0時(shí),f(x)=x2+x3,則當(dāng)x<0時(shí),f(x)為(  )
A.x2+x3B.-x2+x3C.x2-x3D.-x2-x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=log{\;}_{\frac{1}{2}}}(4x-x2),則函數(shù)f(x)的單調(diào)增區(qū)間為[2,4).

查看答案和解析>>

同步練習(xí)冊(cè)答案
关 闭