20.已知隨機變量ξ的分布列為P(ξ=K)=$\frac{1}{{2}^{K}}$,k=1,2,…,則P(2<ξ≤4)等于( 。
A.$\frac{3}{16}$B.$\frac{1}{4}$C.$\frac{1}{16}$D.$\frac{1}{5}$

分析 P(2<ξ≤4)=P(ξ=3)+P(ξ=4),由此能求出結(jié)果.

解答 解:∵隨機變量ξ的分布列為P(ξ=K)=$\frac{1}{{2}^{K}}$,k=1,2,…,
∴P(2<ξ≤4)=P(ξ=3)+P(ξ=4)
=$\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}}$
=$\frac{3}{16}$.
故選:A.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意離散型隨機變量的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=x-a-lnx(a∈R).
(1)若f(x)≥0恒成立,求實數(shù)a的取值范圍;
(1)證明:若0<x1<x2,則$\frac{f({x}_{1})-f({x}_{2})}{{x}_{2}-{x}_{1}}$<$\frac{1}{{x}_{1}({x}_{1}+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知a,b,c,d都是實數(shù),且a2+b2=1,c2+d2=4,
求證:|ac+bd|≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知a1=$\frac{1}{2},{a_{n+1}}=\frac{a_n}{{1+2{a_n}}}$(n∈N*
(1)求a2,a3,a4并由此猜想數(shù)列{an}的通項公式an的表達式;
(2)用數(shù)學歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某研究小組在電腦上進行人工降雨模擬試驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其試驗數(shù)據(jù)統(tǒng)計如表
方式實施地點大雨中雨小雨模擬實驗總次數(shù)
A4次6次2次12次
B3次6次3次12次
C2次2次8次12次
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬試驗的統(tǒng)計數(shù)據(jù)
(I)求甲、乙、丙三地都恰為中雨的概率;
(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),丙地只能是小雨或中雨即達到理想狀態(tài),記“甲、乙、丙三地中達到理想狀態(tài)的個數(shù)”為隨機變量ξ,求隨機變量ξ的分布列和數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知點列An(xn,0),n∈N*,其中x1=0,x2=1.A3是線段A1A2的中點,A4是線段A2A3的中點,…,An+2是線段AnAn+1的中點,…設(shè)an=xn+1-xn
(Ⅰ)寫出xn與xn-1、xn-2(n≥3)之間的關(guān)系式并計算a1,a2,a3;
(Ⅱ)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某外語學校英語班有A1、A2兩位同學,日語班有B1、B2、B3三位同學,共5人報名奧運會志愿者,現(xiàn)從中選出懂英語、日語的志愿者各1人,組成一個小組.
(1)寫出所有可能的結(jié)果;
(2)求A2被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.過點M(1,1)的直線與橢圓$\frac{x^2}{4}+\frac{y^2}{3}$=1交于A,B兩點,且點M平分弦AB,則直線AB的方程為( 。
A.4x+3y-7=0B.3x+4y-7=0C.3x-4y+1=0D.4x-3y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知A(0,1),B(-$\sqrt{3}$,0),C(-$\sqrt{3}$,2),則△ABC外接圓的圓心到直線y=-$\sqrt{3}$x的距離為$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案