【題目】如圖所示,直角梯形中,,,,四邊形為矩形,,平面平面.

1)求證:平面

2)求二面角的正弦值;

3)在線(xiàn)段上是否存在點(diǎn),使得直線(xiàn)與平面所成角的正弦值為,若存在,求出線(xiàn)段的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

【答案】1)證明見(jiàn)解析;(2;(3)存在,.

【解析】

1)證明:四邊形為矩形,,

又平面平面,平面平面,

平面.

為原點(diǎn),所在直線(xiàn)為軸,所在直線(xiàn)為軸建立空間直角坐標(biāo)系,

如圖,則,0,2,,,2,,,0,,2,,

設(shè)平面的法向量,,

,,,,2,

,取,得,0,

2,,,,

平面,平面;

20,,0,2,,,,0,,

設(shè)平面的法向量,,

,取,得,

設(shè)平面的法向量,

,取,得,1,,

設(shè)二面角的平面角為,

,

二面角的正弦值.

3)假設(shè)在線(xiàn)段上存在點(diǎn),使得直線(xiàn)與平面所成角的正弦值為,

設(shè),,,則,,

解得,,,,

平面的法向量,,,

直線(xiàn)與平面所成角的正弦值為,

,

解得

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知定點(diǎn)F10),點(diǎn)Ax軸的非正半軸上運(yùn)動(dòng),點(diǎn)By軸上運(yùn)動(dòng),滿(mǎn)足0,A關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn)為M,設(shè)點(diǎn)M的軌跡為曲線(xiàn)C.

1)求C的方程;

2)已知點(diǎn)G3,﹣2),動(dòng)直線(xiàn)xtt3)與C相交于P,Q兩點(diǎn),求過(guò)G,P,Q三點(diǎn)的圓在直線(xiàn)y=﹣2上截得的弦長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓規(guī)是用來(lái)畫(huà)橢圓的一種器械,它的構(gòu)造如圖所示,在一個(gè)十字形的金屬板上有兩條互相垂直的導(dǎo)槽,在直尺上有兩個(gè)固定的滑塊AB,它們可分別在縱槽和橫槽中滑動(dòng),在直尺上的點(diǎn)M處用套管裝上鉛筆,使直尺轉(zhuǎn)動(dòng)一周,則點(diǎn)M的軌跡C是一個(gè)橢圓,其中|MA|2,|MB|1,如圖,以?xún)蓷l導(dǎo)槽的交點(diǎn)為原點(diǎn)O,橫槽所在直線(xiàn)為x軸,建立直角坐標(biāo)系.

1)將以射線(xiàn)Bx為始邊,射線(xiàn)BM為終邊的角xBM記為φ0≤φ),用表示點(diǎn)M的坐標(biāo),并求出C的普通方程;

2)已知過(guò)C的左焦點(diǎn)F,且傾斜角為α0≤α)的直線(xiàn)l1C交于D,E兩點(diǎn),過(guò)點(diǎn)F且垂直于l1的直線(xiàn)l2C交于G,H兩點(diǎn).當(dāng),|GH|,依次成等差數(shù)列時(shí),求直線(xiàn)l2的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,過(guò)定點(diǎn)的直線(xiàn)l與橢圓E相交于A,B兩點(diǎn),C為橢圓的左頂點(diǎn),當(dāng)直線(xiàn)l過(guò)點(diǎn)時(shí),O為坐標(biāo)原點(diǎn))的面積為

1)求橢圓E的方程;

2)求證:當(dāng)直線(xiàn)l不過(guò)C點(diǎn)時(shí),為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定數(shù)列.對(duì),該數(shù)列前項(xiàng)的最小值記為,后項(xiàng)的最大值記為,令.

1)設(shè)數(shù)列2,1,6,3,寫(xiě)出,,的值;

2)設(shè)是等比數(shù)列,公比,且,證明:是等比數(shù)列;

3)設(shè)是公差大于0的等差數(shù)列,且,證明:是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx)=Asinωx+B的部分圖象如圖所示,其中A0ω0,|φ|

(Ⅰ)求函數(shù)yfx)解析式;

(Ⅱ)求x[0,]時(shí),函數(shù)yfx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐D-ABC為銳角三角形,平面ACD⊥平面.

1)求證:CD⊥平面ABC

2)若直線(xiàn)BD與平面ACD所成角的正弦值為,求二面角D-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個(gè)人組成的解密團(tuán)隊(duì)參加一項(xiàng)解密挑戰(zhàn)活動(dòng),規(guī)則是由密碼專(zhuān)家給出題目,然后由個(gè)人依次出場(chǎng)解密,每人限定時(shí)間是分鐘內(nèi),否則派下一個(gè)人.個(gè)人中只要有一人解密正確,則認(rèn)為該團(tuán)隊(duì)挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測(cè)試情況,抽取了甲次的測(cè)試記錄,繪制了如下的頻率分布直方圖.

1)若甲解密成功所需時(shí)間的中位數(shù)為,求、的值,并求出甲在分鐘內(nèi)解密成功的頻率;

2)在“挑戰(zhàn)不可能”節(jié)目上由于來(lái)自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個(gè)出場(chǎng)選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨(dú)立.

求該團(tuán)隊(duì)挑戰(zhàn)成功的概率;

該團(tuán)隊(duì)以從小到大的順序按排甲、乙、丙三個(gè)人上場(chǎng)解密,求團(tuán)隊(duì)挑戰(zhàn)成功所需派出的人員數(shù)目的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某市31日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇31日至313日中的某一天到達(dá)該市,并停留2.

1)求此人到達(dá)當(dāng)日空氣重度污染的概率;

2)求此人在該市停留期間只有1天空氣重度污染的概率;

3)由圖判斷從哪天開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案