【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為__________.
【答案】或
【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當(dāng)a<0時(shí),則平行AC直線即可故a=-2,當(dāng)a>0時(shí),則直線平行AB即可,故a=1
點(diǎn)睛:線性規(guī)劃為?碱}型,解決此題務(wù)必要理解最優(yōu)解個(gè)數(shù)為無(wú)數(shù)個(gè)時(shí)的條件是什么,然后根據(jù)幾何關(guān)系求解即可
【題型】填空題
【結(jié)束】
16
【題目】《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實(shí),一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以, , , 分別表示三角形的面積,大斜,中斜,小斜; , , 分別為對(duì)應(yīng)的大斜,中斜,小斜上的高;則 .若在中, , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)在拋物線上,點(diǎn)是拋物線上的動(dòng)點(diǎn).
(1)求拋物線的方程及其準(zhǔn)線方程;
(2)過點(diǎn)作拋物線的兩條切線,、分別為兩個(gè)切點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的左、右焦點(diǎn)分別為,,過作垂直于軸的直線與橢圓在第一象限交于點(diǎn),若,且.
(Ⅰ)求橢圓的方程;
(Ⅱ),是橢圓上位于直線兩側(cè)的兩點(diǎn).若直線過點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f'(x)的極值點(diǎn)是f(x)的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)
(1)求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;
(2)證明:b2>3a;
(3)若f(x),f'(x)這兩個(gè)函數(shù)的所有極值之和不小于-,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了適當(dāng)疏導(dǎo)電價(jià)矛盾,保障電力供應(yīng),支持可再生能源發(fā)展,促進(jìn)節(jié)能減排,安徽省于2012年推出了省內(nèi)居民階梯電價(jià)的計(jì)算標(biāo)準(zhǔn):以一個(gè)年度為計(jì)費(fèi)周期、月度滾動(dòng)使用,第一階梯電量:年用電量2160度以下(含2160度),執(zhí)行第一檔電價(jià)0.5653元/度;第二階梯電量:年用電量2161至4200度(含4200度),執(zhí)行第二檔電價(jià)0.6153元/度;第三階梯電量:年用電量4200度以上,執(zhí)行第三檔電價(jià)0.8653元/度.
某市的電力部門從本市的用電戶中隨機(jī)抽取10戶,統(tǒng)計(jì)其同一年度的用電情況,列表如下表:
用戶編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年用電量(度) | 1000 | 1260 | 1400 | 1824 | 2180 | 2423 | 2815 | 3325 | 4411 | 4600 |
(Ⅰ)試計(jì)算表中編號(hào)為10的用電戶本年度應(yīng)交電費(fèi)多少元?
(Ⅱ)現(xiàn)要在這10戶家庭中任意選取4戶,對(duì)其用電情況作進(jìn)一步分析,求取到第二階梯電量的戶數(shù)的分布列與期望;
(Ⅲ)以表中抽到的10戶作為樣本估計(jì)全市的居民用電情況,現(xiàn)從全市居民用電戶中隨機(jī)地抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請(qǐng)將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;
(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請(qǐng)回答下面問題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.
【答案】(I)見解析; (Ⅱ)見解析.
【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關(guān)系是一次函數(shù)的關(guān)系式,而乙公司是分段函數(shù)的關(guān)系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學(xué)期望,進(jìn)而可得結(jié)論.
詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:元) 與銷售件數(shù)的關(guān)系式為: .
乙公司一名推銷員的日工資 (單位: 元) 與銷售件數(shù)的關(guān)系式為:
(Ⅱ)記甲公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
122 | 124 | 126 | 128 | 130 | |
0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
記乙公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
120 | 128 | 144 | 160 | |
0.2 | 0.3 | 0.4 | 0.1 |
∴
∴僅從日均收入的角度考慮,我會(huì)選擇去乙公司.
點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:
第一步是“判斷取值”,即判斷隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;
第二步是“探求概率”,即利用排列組合,枚舉法,概率公式,求出隨機(jī)變量取每個(gè)值時(shí)的概率;
第三步是“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確;
第四步是“求期望值”,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值
【題型】解答題
【結(jié)束】
19
【題目】如圖,在四棱錐中,底面為菱形, 平面, , , , 分別是, 的中點(diǎn).
(1)證明: ;
(2)設(shè)為線段上的動(dòng)點(diǎn),若線段長(zhǎng)的最小值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過A作圓的切線,斜率為-,求雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com