9.分別拋擲2枚質(zhì)地均勻的硬幣,設(shè)A是事件“第一枚為正面”,B是事件“第二枚為正面”,C是事件“2枚結(jié)果相同”.則事件A與B,事件B與C,事件A與C中相互獨(dú)立的有(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

分析 事件A(或B)是否發(fā)生對事件B(A)發(fā)生的概率沒有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件相互獨(dú)立事件.

解答 解:∵分別拋擲2枚質(zhì)地均勻的硬幣,設(shè)A是事件“第一枚為正面”,B是事件“第二枚為正面”,C是事件“2枚結(jié)果相同”,
∴事件A發(fā)生與否與事件B無關(guān),事件B發(fā)生與否與事件A無關(guān),故事件A與B是相互獨(dú)立事件,
事件B發(fā)生與否與事件C無關(guān),事件C發(fā)生與否與事件B無關(guān),故事件B與C是相互獨(dú)立事件,
事件A發(fā)生與否與事件C無關(guān),事件C發(fā)生與否與事件A無關(guān),故事件A與B是相互獨(dú)立事件.
故選:D.

點(diǎn)評 本題考查相互獨(dú)立事件的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意相互獨(dú)立事件的定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足:對任意x∈R,都有f(-x)=f(x),f(4-x)=f(x)成立,且已知x∈(-1,3]時(shí),f(x)=$\left\{\begin{array}{l}{cos(\frac{π}{2}x),x∈(-1,1]}\\{1-|x-2|,x∈(1,3]}\end{array}\right.$,則函數(shù)g(x)=4f(x)-|x|的零點(diǎn)個(gè)數(shù)共為(  )
A.12個(gè)B.10個(gè)C.8個(gè)D.6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知拋物線C1:y2=4x的焦點(diǎn)為F,點(diǎn)P為拋物線上一點(diǎn),且|PF|=3,雙曲線C2:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線恰好過P點(diǎn),則雙曲線C2的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,c=4,a=2,C=45°,則sinA=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)滿足f(1)=2,f(x+1)=$\frac{1+f(x)}{1-f(x)}$,則f(1)•f(2)•f(3)…f(23)的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x-$\frac{1}{x}$|(x>0).
(1)若a≠b且f(a)=f(b),求證:ab=1;
(2)當(dāng)a<b,是否存在區(qū)間[a,b],使得f(x)的定義域和值域都是[a,b],若存在求出a,b的值,不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C的中心為原點(diǎn)O,長軸在x軸上,離心率e=$\frac{{\sqrt{2}}}{2}$,過左焦點(diǎn)F1作x軸的垂線交橢圓于A,A'兩點(diǎn),|AA'|=$\sqrt{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l與圓O:x2+y2=1相交于不同的兩點(diǎn)E,F(xiàn),與橢圓C相交于不同的兩點(diǎn)G,H,求△OEF的面積最大時(shí)弦長|GH|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知(x1,y1),(x2,y2)是方程組$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$的兩組解,求(x1-x22+(y1-y22的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在等差數(shù)列{an}中,a1+a2=5,a3+a4=17.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為Sn,求Sn的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案