【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)被稱為狄利克雷函數(shù),其中為實(shí)數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個(gè)命題:①;②函數(shù)是偶函數(shù);③任取一個(gè)不為零的有理數(shù),對任意的恒成立;④存在三個(gè)點(diǎn),,使得為等邊三角形.其中真命題的個(gè)數(shù)有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】D

【解析】

根據(jù)所給的定義,運(yùn)用分類討論的方法、取特殊值法進(jìn)行逐一判斷即可.

①∵當(dāng)為有理數(shù)時(shí),;當(dāng)為無理數(shù)時(shí),,

∴當(dāng)為有理數(shù)時(shí),;

當(dāng)為無理數(shù)時(shí),,

即不管是有理數(shù)還是無理數(shù),均有,故①正確;

②∵有理數(shù)的相反數(shù)還是有理數(shù),無理數(shù)的相反數(shù)還是無理數(shù),

∴對任意,都有,故②正確;

③若是有理數(shù),則也是有理數(shù); 是無理數(shù),則也是無理數(shù),

∴根據(jù)函數(shù)的表達(dá)式,任取一個(gè)不為零的有理數(shù),恒成立,故③正確;

④取,,可得,,

,,恰好為等邊三角形,故④正確.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求單調(diào)區(qū)間;

(2)設(shè),證明:上有最小值;設(shè)上的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在側(cè)棱垂直底面的四棱柱中,,.,,,分別是的中點(diǎn),的交點(diǎn).

(I) 求線段,的長度;

(II)證明:平面;

(III)與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且滿足,數(shù)列中,,對任意正整數(shù),.

1)求數(shù)列的通項(xiàng)公式;

2)是否存在實(shí)數(shù),使得數(shù)列是等比數(shù)列?若存在,請求出實(shí)數(shù)及公比q的值,若不存在,請說明理由;

3)求數(shù)列n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實(shí)數(shù),已知,

1)若函數(shù),求的值;

2)當(dāng)時(shí),求證:函數(shù)上是單調(diào)遞增函數(shù);

3)若對于一切,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),求

(1)過點(diǎn)A,B且周長最小的圓的方程;

(2)過點(diǎn)A,B且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù),向量, ,經(jīng)過點(diǎn),以為方向向量的直線與經(jīng)過點(diǎn),以為方向向量的直線交于點(diǎn),其中

)求點(diǎn)的軌跡方程,并指出軌跡

)若點(diǎn),當(dāng)時(shí), 為軌跡上任意一點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,為等邊三角形,分別為的中點(diǎn),的中點(diǎn),,將沿折起到的位置,使得平面平面,

的中點(diǎn),如圖2

1)求證:平面;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓過右焦點(diǎn)的弦為、過原點(diǎn)的弦為,若,求證:為定值.

查看答案和解析>>

同步練習(xí)冊答案