分析 (1)當(dāng)a=0時(shí),利用函數(shù)奇偶性的定義進(jìn)行判斷即可;
(2)當(dāng)x≤a時(shí),f(x)=x2-x+a+1=(x-$\frac{1}{2}$)2+a+$\frac{3}{4}$,分a>$\frac{1}{2}$時(shí)和a≤$\frac{1}{2}$時(shí)兩種情況,分別求得函數(shù)f(x)的最小值.
②當(dāng)x>a 時(shí),f(x)=x2+x-a+1=(x+$\frac{1}{2}$)2-a+$\frac{3}{4}$,分a>-$\frac{1}{2}$時(shí)和當(dāng)a≤-$\frac{1}{2}$時(shí)兩種情況,分別求得函數(shù)f(x)的最小值.
解答 解:(1)對(duì)于函數(shù) f(x)=x2+|x-a|+1,
當(dāng)a=0時(shí),f(x)=x2+|x|+1為偶函數(shù).
(2)①當(dāng)x≤a時(shí),f(x)=x2-x+a+1=(x-$\frac{1}{2}$)2+a+$\frac{3}{4}$,
若a>$\frac{1}{2}$時(shí),函數(shù)f(x)的最小值為f($\frac{1}{2}$)=a+$\frac{3}{4}$;
若a≤$\frac{1}{2}$時(shí),函數(shù)f(x)的最小值為f(a)=a2+1.
②當(dāng)x>a 時(shí),f(x)=x2+x-a+1=(x+$\frac{1}{2}$)2-a+$\frac{3}{4}$,
若a>-$\frac{1}{2}$時(shí),函數(shù)f(x)的最小值為f(a)=a2+1;
若a≤-$\frac{1}{2}$時(shí),函數(shù)f(x)的最小值為f(-$\frac{1}{2}$)=-a+$\frac{3}{4}$.
由a2+1>a+$\frac{3}{4}$,a2+1>-a+$\frac{3}{4}$,
綜上可得,a>$\frac{1}{2}$時(shí),函數(shù)f(x)的最小值為a+$\frac{3}{4}$;
a≤-$\frac{1}{2}$時(shí),函數(shù)f(x)的最小值為-a+$\frac{3}{4}$;
當(dāng)-$\frac{1}{2}$<a≤$\frac{1}{2}$,函數(shù)f(x)的最小值為a2+1.
點(diǎn)評(píng) 本題主要考查帶有絕對(duì)值的函數(shù),函數(shù)的奇偶性的判斷,求二次函數(shù)的最值,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | $\sqrt{3}$ | C. | -$\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,ln(ex-1)>0 | B. | ?x∈R,ln(ex-1)≥0 | C. | ?x∈R,ln(ex-1)<0 | D. | ?x∈R,ln(ex-1)≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com