【題目】2021年廣東新高考將實行“”模式,即語文、數(shù)學、英語必選,物理、歷史二選一,政治、地理、化學、生物四選二,共選六科參加高考.其中偏理方向是二選一時選物理,偏文方向是二選一時選歷史,對后四科選擇沒有限定.
(1)小明隨機選課,求他選擇偏理方向及生物學科的概率;
(2)小明、小吳同時隨機選課,約定選擇偏理方向及生物學科,求他們選課相同的概率.
【答案】(1);(2)
【解析】
(1)利用列舉法,列舉出偏理方向和偏文方向的所有情況,即可求得小明選擇偏理方向且選擇了生物學科的概率.
(2)利用列舉法,列舉出兩個人選擇偏理方向且?guī)в猩飳W科的所有可能,即可求得兩人選課相同的概率.
(1)由題意知,選六科參加高考有偏理方向:(物,政,地)、(物,政,化)、(物,政,生)、(物,地,化)、(物,地,生)、(物,化,生)六種選擇;
偏文方向有:(史,政,地)、(史,政,化)、(史,政,生)、(史,地,化)、(史,地,生)、(史,化,生)六種選擇.
由以上可知共有12種選課模式.
小明選擇偏理方向又選擇生物的概率為.
(2)小明選擇偏理且有生物學科的可能有:(物,政,生)、(物,地,生)、(物,化,生)三種選擇,
同樣小吳也是三種選擇;兩人選課模式有:[(物,政,生),(物,政,生)]、[(物,政,生),(物,地,生]、[(物,政,生),(物,化,生)]、[(物,地,生),(物,政,生)]、[(物,地,生),(物,地,生)[(物,地,生),(物,化,生)]、[(物,化,生),(物,政,生)]、[(物,化, 生),(物,地,生)[(物,化,生),(物,化,生)]
由以上可知共有9種選課法,兩人選課相同有三種,
所以兩人選課相同的概率.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,為了測量某一隧道兩側A、B兩地間的距離,某同學首先選定了不在直線AB上的一點C(中∠A、∠B、∠C所對的邊分別為a、b、c),然后確定測量方案并測出相關數(shù)據(jù),進行計算.現(xiàn)給出如下四種測量方案;①測量∠A,∠C,b;②測量∠A,∠B,∠C;③測量a,b,∠C;④測量∠A,∠B,a,則一定能確定A、B間距離的所有方案的序號為( )
A.①③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某兒童樂園在“六一”兒童節(jié)推出了一項趣味活動.參加活動的兒童需轉動如圖所示的轉盤兩次,每次轉動后,待轉盤停止轉動時,記錄指針所指區(qū)域中的數(shù).設兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:
①若,則獎勵玩具一個;
②若,則獎勵水杯一個;
③其余情況獎勵飲料一瓶.
假設轉盤質地均勻,四個區(qū)域劃分均勻.小亮準備參加此項活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當中()的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結果回答下列問題:
(1)當在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族的人均通勤時間的表達式;討論的單調性,并說明其實際意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù)在上是增函數(shù),求正數(shù)的取值范圍;
(2)當時,設函數(shù)的圖象與x軸的交點為,,曲線在,兩點處的切線斜率分別為,,求證:+ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】首屆中國國際進口博覽會于2018年11月5日至10日在上海的國家會展中心舉辦.國家展、企業(yè)展、經(jīng)貿(mào)論壇、高新產(chǎn)品匯集……首屆進博會高點紛呈.一個更加開放和自信的中國,正用實際行動為世界構筑共同發(fā)展平臺,展現(xiàn)推動全球貿(mào)易與合作的中國方案.
某跨國公司帶來了高端智能家居產(chǎn)品參展,供購商洽談采購,并決定大量投放中國市場.已知該產(chǎn)品年固定研發(fā)成本30萬美元,每生產(chǎn)一臺需另投入90美元.設該公司一年內生產(chǎn)該產(chǎn)品萬臺且全部售完,每萬臺的銷售收入為萬美元,
(1)寫出年利潤(萬美元)關于年產(chǎn)量(萬臺)的函數(shù)解析式;(利潤=銷售收入-成本)
(2)當年產(chǎn)量為多少萬臺時,該公司獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,分別為橢圓:的左右焦點,已知橢圓上的點到焦點,的距離之和為4.
(1)求橢圓的方程;
(2)過點作直線交橢圓于,兩點,線段的中點為,連結并延長交橢圓于點(為坐標原點),若,,等比數(shù)列,求線段的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4,極坐標與參數(shù)方程
已知在平面直角坐標系中,為坐標原點,曲線(為參數(shù)),在以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同單位長度的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)直線與軸的交點,經(jīng)過點的直線與曲線交于兩點,若,求直線的傾斜角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com