已知點(diǎn)(sinα-cosα,tanα)在第一象限,則[0,2π]內(nèi),α的取值范圍是

[  ]
A.

(,)∪(π,)

B.

(,)∪(π,)

C.

(,)∪(,)

D.

()∪(,π)

答案:B
解析:

  利用單位圓中的三角函數(shù)線,若點(diǎn)在第一象限,則sinα>cosα,且tanα>0.由sinα>cosα知,<α<.又由tanα>0知,α∈(0,)∪(π,).

  因而求得α的取值范圍為(,)∪(π,).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)上的點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與C的弧
AP
的長(zhǎng)度均為
π
3

(1)以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo);
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)已知點(diǎn)P(1+cosα,sinα),參數(shù)α∈[0,π],點(diǎn)Q在曲線C:ρ=
10
-
2
sin(θ+
π
4
)
上.
(I)求點(diǎn)P的軌跡方程和曲線C的直角坐標(biāo)方程;
(II)求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A、B、C的坐標(biāo)分別為A(t,0),B(0,4),C(cosα,sinα),其中t∈R,α∈[
π
3
,
3
]

(Ⅰ)若t=4,
AC
BC
=-2,求
2sin2α+sin2α
1+tanα
的值;
(Ⅱ)記f(α)=|
AC
|
,若f(α)的最大值為3,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•太原模擬)(選做題)已知點(diǎn)P(1+cosα,sinα),參數(shù)a∈[0,π],點(diǎn)Q在曲線C:ρ=
9
2
sin(θ+
π
4
)
上.
(1)求點(diǎn)P的軌跡方程和曲線C的直角坐標(biāo)方程;
(2)求點(diǎn)P與點(diǎn)Q之間距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案