定義方程f(x)=f′(x)的實數(shù)根x叫做函數(shù)f(x)的“新不動點”,如果函數(shù)(x∈(0,+∞)),h(x)=sinx+2cosxx∈(0,π),φ(x)=e1-x-2的“新不動點”分別為α,β,γ,那么α,β,γ的大小關(guān)系是( )
A.α<β<γ
B.α<γ<β
C.γ<α<β
D.β<α<γ
【答案】分析:由題設中所給的定義,方程f(x)=f'(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,對三個函數(shù)所對應的方程進行研究,分別計算求出α,β,γ的值或存在的大致范圍,再比較出它們的大小即可選出正確選項
解答:解:由題意方程f(x)=f'(x)的實數(shù)根x叫做函數(shù)f(x)的“新駐點”,x>0
對于函數(shù)g(x)=(x>0),由于g′(x)=x,由可得x=2,即α=2
對于函數(shù)h(x)=sinx+2cosx(0<x<π),
由于h′(x)=cosx-2sinx,題意可得sinx+2cosx=cosx-2sinx,即tanx=
∵x∈(0,π),
<β<π
對于函數(shù)φ(x)=e1-x-2,由于φ′(x)=-e1-x,可得γ=0
綜上γ<α<β
故選C
點評:本題是一個新定義的題,理解定義,分別建立方程解出α,β,γ的值或存在范圍是解題的關(guān)鍵,本題考查了推理判斷的能力,計算能力屬于基本題型
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,若函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=x3-1的“新駐點”分別為α,β,γ,則α,β,γ的大小關(guān)系為(  )
A、α>β>γB、β>α>γC、γ>α>βD、β>γ>α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,若函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=x3-lg(x)=x,h(x)=ln(x+1),φ(x)=x3-1的“新駐點”分別為α,β,γ,則α,β,γ的大小關(guān)系為( 。
A、α>β>γB、β>α>γC、γ>α>βD、β>γ>α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•云南模擬)定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,如果函數(shù)g(x)=x,h(x)=lnx,φ(x)=cosx(x∈(
π
2
,π))的“新駐點”分別為α,β,γ,那么α,β,γ的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,若函數(shù)g(x)=2x,h(x)=lnx,φ(x)=x3(x≠0)的“新駐點”分別為a,b,c,則a,b,c的大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義方程f(x)=f′(x)(f′(x)是f(x)的導函數(shù))的實數(shù)根x0叫做函數(shù)的f(x)“新駐點”,若函數(shù)g(x)=x,r(x)=ln(x+1),φ(x)=x3-1的“新駐點”分別為α,β,γ,則α,β,γ的大小關(guān)系為( 。
A、α>β>γB、β>α>γC、β>γ>αD、γ>α>β

查看答案和解析>>

同步練習冊答案