【題目】計(jì)算
(1)(lg2)2+lg2lg50+lg25;
(2)(2 +0.12+( +2π0

【答案】
(1)解:(lg2)2+lg2lg50+lg25

=(lg2)2+lg2(1+lg5)+2lg5

=(lg2)2+lg2+lg2lg5+2lg5

=lg2(lg2+lg5)+lg2+2lg5

=lg2+lg2+2lg5

=2(lg2+lg5)

=2


(2)解:(2 +0.12+( +2π0

=[ ] +(1012+(33 +2

= +100+5

=


【解析】(1)利用對(duì)數(shù)性質(zhì)、運(yùn)算法則求解.(2)利用指數(shù)性質(zhì)、運(yùn)算法則求解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解對(duì)數(shù)的運(yùn)算性質(zhì)的相關(guān)知識(shí),掌握①加法:②減法:③數(shù)乘:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,如圖描述了甲、乙、丙三輛汽車在不同速度下燃油效率情況,下列敘述中正確的是(

A.消耗1升汽油,乙車最多可行駛5千米
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C.某城市機(jī)動(dòng)車最高限速80千米/小時(shí),相同條件下,在該市用丙車比用乙車更省油
D.甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市每年中考都要舉行實(shí)驗(yàn)操作考試和體能測(cè)試,初三(1)班共有30名學(xué)生,如圖表格為該班學(xué)生的這兩項(xiàng)成績(jī),表中實(shí)驗(yàn)操作考試和體能測(cè)試都為優(yōu)秀的學(xué)生人數(shù)為6人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這班30人中隨機(jī)抽取一個(gè),實(shí)驗(yàn)操作成績(jī)合格,且體能測(cè)試成績(jī)合格或合格以上的概率是

實(shí)驗(yàn)操作

不合格

合格

良好

優(yōu)秀

體能測(cè)試

不合格

0

1

1

1

合格

0

2

1

良好

1

2

4

優(yōu)秀

1

1

3

6

(Ⅰ)試確定 的值;

(Ⅱ)從30人中任意抽取3人,設(shè)實(shí)驗(yàn)操作考試和體能測(cè)試成績(jī)都是良好或優(yōu)秀的學(xué)生人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】濰坊文化藝術(shù)中心的觀光塔是濰坊市的標(biāo)志性建筑,某班同學(xué)準(zhǔn)備測(cè)量觀光塔的高度單位:米),如圖所示,垂直放置的標(biāo)桿的高度米,已知, .

1)該班同學(xué)測(cè)得一組數(shù)據(jù): ,請(qǐng)據(jù)此算出的值;

2該班同學(xué)分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到觀光塔的距離單位:米),使的差較大,可以提高測(cè)量精確度,若觀光塔高度為136米,問為多大時(shí), 的值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為坐標(biāo)原點(diǎn),上有兩點(diǎn)滿足關(guān)于直線軸對(duì)稱.

(1)求的值;

(2)若,求線段的長(zhǎng)及其中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校實(shí)行自主招生,參加自主招生的學(xué)生從8個(gè)試題中隨機(jī)挑選出4個(gè)進(jìn)行作答,至少答對(duì)3個(gè)才能通過初試.已知甲、乙兩人參加初試,在這8個(gè)試題中甲能答對(duì)6個(gè),乙能答對(duì)每個(gè)試題的概率為,且甲、乙兩人是否答對(duì)每個(gè)試題互不影響.

(Ⅰ)求甲通過自主招生初試的概率;

(Ⅱ)試通過概率計(jì)算,分析甲、乙兩人誰(shuí)通過自主招生初試的可能性更大;

(Ⅲ)記甲答對(duì)試題的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若,求曲線處的切線方程;

(Ⅱ)若對(duì)任意 , 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù),
(1)求實(shí)數(shù)a的值;
(2)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)關(guān)于x的方程f(4x﹣b)+f(﹣2x+1)=0有實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣4x+a+3,a∈R.
(1)若函數(shù)y=f(x)的圖象與x軸無(wú)交點(diǎn),求a的取值范圍;
(2)若函數(shù)y=f(x)在[﹣1,1]上存在零點(diǎn),求a的取值范圍;
(3)設(shè)函數(shù)g(x)=bx+5﹣2b,b∈R.當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案