(本小題共12分)
設x=3是函數(shù)f (x) = (x2+ax+b)·e3-x (x∈R)的一個極值點。
⑴求a與b的關系式,(用a表示b),并求f(x)的單調區(qū)間。
⑵設a>0, ,若存在ε1,ε2∈[0,4],使|f (ε1)-g (ε2)|<1成立,求a的取值范圍
(1) 當a<-4時,x2>3=x1,則在區(qū)間(-∞,3)上,,f(x)為減函數(shù);
在區(qū)間(3,-a-1)上f (x)為增函數(shù)。
在區(qū)間(-a-1,+∞)上f (x)為減函數(shù)。
當a>-4時,x2<3=x1,則在區(qū)間(-∞,-a-1)上f(x)為減函數(shù);
在區(qū)間(-a-1,3)上,為增函數(shù);
在區(qū)間(3,+∞)上, f(x)為減函數(shù)。
(2)
【解析】解:⑴ (2分)
=
令
由于x=3是極值點,所以3+a+1≠0,那么a≠-4。
當a<-4時,x2>3=x1,則在區(qū)間(-∞,3)上,,f(x)為減函數(shù);
在區(qū)間(3,-a-1)上f (x)為增函數(shù)。
在區(qū)間(-a-1,+∞)上f (x)為減函數(shù)。 (4分)
當a>-4時,x2<3=x1,則在區(qū)間(-∞,-a-1)上f(x)為減函數(shù);
在區(qū)間(-a-1,3)上,為增函數(shù);
在區(qū)間(3,+∞)上, f(x)為減函數(shù)。 (6分)
⑵由①知,當a>0時,f(x)在區(qū)間(0,3)上的單調遞增,在區(qū)間(3,4)上單調遞減,
那么f(x)在區(qū)間[0,4]上的值域是[min (f (0),f (4)),f (3)],
而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f(3)=a+6,
那么f(x)在區(qū)間[0,4]上的值域是[-(2a+3)e3,a+6], (8分)
又g (x)=在區(qū)間[0,4]上是增函數(shù),
且它在區(qū)間[0,4]上的值域是 (10分)
由于
所以只需
故a的取值范圍是。 (12分
科目:高中數(shù)學 來源: 題型:
. (本小題共12分)已知橢圓E:的焦點坐標為(),點M(,)在橢圓E上(1)求橢圓E的方程;(2)O為坐標原點,⊙的任意一條切線與橢圓E有兩個交點,且,求⊙的半徑。
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年內蒙古呼倫貝爾市高三第三次模擬考試文科數(shù)學試卷 題型:解答題
(本小題共12分)如圖,已知⊥平面,∥,是正三角形,,且是的中點
(1)求證:∥平面;
(2)求證:平面BCE⊥平面.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年內蒙古呼倫貝爾市高三第三次模擬考試文科數(shù)學試卷 題型:解答題
(本小題共12分)某中學的高二(1)班男同學有名,女同學有名,老師按照分層抽樣的方法組建了一個人的課外興趣小組.
(Ⅰ)求某同學被抽到的概率及課外興趣小組中男、女同學的人數(shù);
(Ⅱ)經過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出名同學做實驗,該同學做完后,再從小組內剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率;
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年甘肅省天水市高三上學期第一階段性考試理科數(shù)學卷 題型:解答題
(本小題共12分)
如圖,在正三棱柱ABC—A1B1C1中,點D是棱AB的中點,BC=1,AA1=
(1)求證:BC1//平面A1DC;
(2)求二面角D—A1C—A的大小
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆黑龍江省高一上學期期末考試理科數(shù)學 題型:解答題
(本小題共12分)已知函數(shù)
(1)求函數(shù)圖象的對稱中心
(2)已知,,求證:.
(3)求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com