已知橢圓數(shù)學公式+數(shù)學公式=1上的兩點A、B與右焦點F2滿足|AF2|+|BF2|=數(shù)學公式a,又線段AB中點到左準線的距離為數(shù)學公式,求此橢圓方程.

解:設A(x1,y1),B(x2,y2),

由焦半徑公式有a-ex1+a-ex2=,∴x1+x2=,即AB中點橫坐標為
又左準線方程為,∴,即a=1,
∴橢圓方程為
分析:可使用焦半徑公式,設A(x1,y1),B(x2,y2),則|AF2|=a-ex1,|BF2|=a-ex2,從而可得,即AB中點橫坐標,再由線段AB中點到左準線的距離為,列方程即可得a的值,最后確定橢圓方程
點評:本題考查了橢圓的兩個定義及橢圓的標準方程和幾何性質(zhì),重點掌握兩個定義及其應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,F(xiàn)1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右兩個焦點,A,B為兩個頂點,已知橢圓C上的點到F1,F(xiàn)2兩點的距離之和為4且b=
3

(1)求橢圓C的方程和焦點坐標;
(2)過橢圓C的焦點F2作AB的平行線交橢圓于P,Q兩點,求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,F(xiàn)1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)
的左、右兩個焦點,A、B為兩個頂點,已知橢圓C上的點(1,
3
2
)
到F1、F2兩點的距離之和為4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的焦點F2作AB的平行線交橢圓于P、Q兩點,求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的一個焦點是F(1,0),已知橢圓短軸的兩個三等分點與一個焦點構成正三角形.
(1)求橢圓的標準方程;
(2)已知Q(x0,y0)為橢圓上任意一點,求以Q為切點,橢圓的切線方程.
(3)設點P為直線x=4上一動點,過P作橢圓兩條切線PA,PB,求證直線AB過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點是F(1,0),0為坐標原點.
(Ⅰ)已知橢圓短軸的兩個三等分點與一個焦點構成正三角形,求橢圓的方程;
(Ⅱ)點M是直線l:x=4上的動點,以OM為直徑的圓過點N,且NF⊥OM,是否存在一個定點,使得N到該定點的距離為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,F(xiàn)1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個焦點,A、B為兩個頂點,已知橢圓C上的點(1,
3
2
)到F1、F2兩點的距離之和為4.
(1)求橢圓C的方程和焦點坐標;
(2)設點M是橢圓上的動點N(0,
1
2
),求|MN|的最大值.
(3)過橢圓C的焦點F2作AB的平行線交橢圓于P、Q兩點,求△F1PQ的面積.

查看答案和解析>>

同步練習冊答案