已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;
(2)設(shè),求上的最大值;
(3)試證明:對,不等式.

(1)函數(shù)上單調(diào)遞增,在上單調(diào)遞減;
(2)=(3)見解析

解析試題分析:(1)先求函數(shù)的定義域,再求出函數(shù)的導(dǎo)數(shù),分別解出導(dǎo)數(shù)大于0和導(dǎo)數(shù)小于0的解集,就是函數(shù)的單調(diào)增區(qū)間和單調(diào)減區(qū)間;(2)由(1)知函數(shù)的單調(diào)性,利用分類整合思想,對區(qū)間端點(diǎn)與單調(diào)區(qū)間的分界點(diǎn)比較,利用函數(shù)的圖像與性質(zhì),求出最大值即可;(3)由(1)知的在(0,+)的最大值,列出關(guān)于的不等式,通過變形化為對恒有,令對,即可得到所證不等式.
試題解析:(1)函數(shù)的定義域是:
由已知               1分
得,, 
當(dāng)時,,當(dāng)時,
函數(shù)上單調(diào)遞增,在上單調(diào)遞減      3分
(2)由(1)知函數(shù)上單調(diào)遞增,在上單調(diào)遞減
故①當(dāng)時,上單調(diào)遞增
                  5分
②當(dāng)時,上單調(diào)遞減
                  7分
③當(dāng),即

綜上所述,=.                   9分
(3)由(1)知,當(dāng)時,      10分
∴ 在上恒有,即且當(dāng)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè) 
(1)若是函數(shù)的極大值點(diǎn),求的取值范圍;
(2)當(dāng)時,若在上至少存在一點(diǎn),使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,設(shè)曲線在點(diǎn)處的切線為。
(1)求實(shí)數(shù)的值;
(2)設(shè)函數(shù),其中。
求證:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時,若在區(qū)間上的最小值為,其中是自然對數(shù)的底數(shù),
求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),函數(shù)g(x)的導(dǎo)函數(shù),且
(1)求的極值;
(2)若,使得成立,試求實(shí)數(shù)m的取值范圍:
(3)當(dāng)a=0時,對于,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中a,b∈R
(1)求函數(shù)f(x)的最小值;
(2)當(dāng)a>0,且a為常數(shù)時,若函數(shù)h(x)=x[g(x)+1]對任意的x1>x2≥4,總有成立,試用a表示出b的取值范圍;
(3)當(dāng)時,若對x∈[0,+∞)恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是函數(shù)的一個極值點(diǎn).
(1)求的關(guān)系式(用表示),并求的單調(diào)區(qū)間;
(2)設(shè),在區(qū)間[0,4]上是增函數(shù).若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知的展開式中的常數(shù)項(xiàng)為m,函數(shù),且,則曲線在點(diǎn)處切線的斜率為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知函數(shù),函數(shù)處的切線方程為              

查看答案和解析>>

同步練習(xí)冊答案