三次函數(shù)y=x3-x2-ax+b在(0,1)處的切線方程為y=2x+1,則a+b=________

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044

對于三次函數(shù)f(x)=x3-3x2-3mx+4(其中m為常數(shù))

(1)求f(x)的極大值;

(2)求f(x)取得極大值5時m的值;

(3)求曲線y=f(x)過原點的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:山西省康杰中學2011-2012學年高二下學期期中考試數(shù)學理科試題 題型:022

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)是函數(shù)y=f(x)的導(dǎo)數(shù)y=的導(dǎo)數(shù),若方程=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.有同學發(fā)現(xiàn)“任何一個三次函數(shù)都有‘拐點’;任何一個三次函數(shù)都有對稱中心;且‘拐點’就是對稱中心.”請你將這一發(fā)現(xiàn)為條件,函數(shù)f(x)=x3x2+3x-,則它的對稱中心為________.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省師大附中2011-2012學年高二下學期期末考試數(shù)學理科試題 題型:022

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)是函數(shù)y=f(x)的導(dǎo)數(shù)的導(dǎo)數(shù),若方程=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.有同學發(fā)現(xiàn)“任何一個三次函數(shù)都有‘拐點’;任何一個三次函數(shù)都有對稱中心;且‘拐點’就是對稱中心.”請你將這一發(fā)現(xiàn)為條件,函數(shù)f(x)=x3x2+3x-,則它的對稱中心為________;

查看答案和解析>>

科目:高中數(shù)學 來源:湖南省瀏陽一中2012屆高三第二次月考數(shù)學文科試題 題型:022

三次函數(shù)f(x)=ax3bx2cxd(a≠0),定義:設(shè)是函數(shù)yf(x)的導(dǎo)數(shù),的導(dǎo)數(shù).若方程(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)yf(x)的“拐點”.

有同學發(fā)現(xiàn)“任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心;且“拐點”就是對稱中心.”請你根據(jù)這一發(fā)現(xiàn),求:

(1)函數(shù)f(x)=x3-3x2+3x對稱中心為________;

(2)若函數(shù)g(x)=x3x2+3x,則g()+g()+g()+g()+…+g()=________

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省高三第一次月考理科數(shù)學試卷 題型:填空題

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.有同學發(fā)現(xiàn)“任何一個三次函數(shù)都有‘拐點’;任何一個三次函數(shù)都有對稱中心;且‘拐點’就是對稱中心.如“函數(shù)f(x)=x3-3x2+3x對稱中心為點 (1,1)”請你將這一發(fā)現(xiàn)

 

查看答案和解析>>

同步練習冊答案