長方體ABCD—ABCD中,,則點到直線AC的距離是

A.3B.C.D.4

A

解析考點:點、線、面間的距離計算.
分析:利用等面積,可求D到AC的距離,再利用勾股定理,即可求得點D1到直線AC的距離
解:在直角三角形ADC中,先求D到AC的距離DE
∵AB=2 AD=2,∴AC=4
利用等面積可得:4×DE=2×2,∴DE=
在直角三角形D1DE中,DE=,AA1=
∴D1E=3
即點D1到直線AC的距離是3
故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖在長方體ABCD-A1B1C1D1中,其中AB=BC,E,F(xiàn)分別是AB1,BC1的中點,則以下結論中
①EF與BB1垂直;
②EF⊥平面BCC1B1
③EF與C1D所成角為45°;
④EF∥平面A1B1C1D1
不成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在長方體ABCD-A1B1ClD1中,AB=AD=1,AA1=2,M為BB1上一點,N為CC1上一點
(1)求三棱錐A1-AMN的體積.
(2)當M是BB1的中點時,求證D1M⊥平面MAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知長方體ABCD-A1B1C1D1中,AB=2
3
,AD=2
3
,AA1=2.
求:
①BC和A1C1所成的角度是多少度?
②AA1和B1C1所成的角是多少度?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•深圳二模)如圖,已知命題:若矩形ABCD的對角線BD與邊AB和BC所成角分別為α,β,則cos2α+cos2β=1,若把它推廣到長方體ABCD-A1B1C1D1中,試寫出相應命題形式:
長方體ABCD-A1B1C1D1中,對角線BD1與棱AB、BB1、BC所成的角分別為α、β、γ,則cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.
長方體ABCD-A1B1C1D1中,對角線BD1與棱AB、BB1、BC所成的角分別為α、β、γ,則cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=BC=2,過A1、C1、B三點的平面截去長方體的一個角后,得到如圖所示的幾何體ABCD-A1C1D1,且這個幾何體的體積為
403

(Ⅰ)求棱A1A的長;
(Ⅱ)自行連接BD,證明:平面A1BC1⊥平面BDD1

查看答案和解析>>

同步練習冊答案