設(shè)數(shù)列{an}(n∈N*)滿足an+2=2an+1-an,Sn是其前n項(xiàng)的和,且S5<S6,S6=S7>S8,則下列結(jié)論錯誤的是( 。
分析:利用an+2=2an+1-an,說明數(shù)列是等差數(shù)列,通過n≥2時,an=sn-sn-1,結(jié)合題意易推出a6>0,a7=0,a8<0,然后逐一分析各選項(xiàng),排除錯誤答案.
解答:解:因?yàn)閍n+2=2an+1-an所以數(shù)列是等差數(shù)列,
由S5<S6得a1+a2+a3+…+a5<a1+a2+…+a5+a6,即a6>0,
又∵S6=S7
∴a1+a2+…+a6=a1+a2+…+a6+a7
∴a7=0,故B正確;
同理由S7>S8,得a8<0,
∵d=an+1-an=a7-a6<0,故A正確;
而C選項(xiàng)S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由結(jié)論a7=0,a8<0,顯然C選項(xiàng)是錯誤的.
∵S5<S6,S6=S7>S8,∴S6與S7均為Sn的最大值,故D正確;
故選C.
點(diǎn)評:本題考查了等差數(shù)列的前n項(xiàng)和公式和sn的最值問題,熟練應(yīng)用公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an} 前n項(xiàng)和Sn=
n(an+1)2
,n∈N*且a2=a
,
(1)求數(shù)列{an} 的通項(xiàng)公式an
(2)若a=3,Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,求T100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3,g (x)=x+
x

(Ⅰ)求函數(shù)h (x)=f(x)-g (x)的零點(diǎn)個數(shù).并說明理由;
(Ⅱ)設(shè)數(shù)列{ an}(n∈N*)滿足a1=a(a>0),f(an+1)=g(an),證明:存在常數(shù)M,使得對于任意的n∈N*,都有an≤M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和Sn,且Sn=2an-2,n∈N+
(Ⅰ)試求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=
nan
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為x(x∈R),滿足Sn=nan-
n(n-1)2
,n∈N+
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)求證:若數(shù)列{an}中存在三項(xiàng)構(gòu)成等比數(shù)列,則x為有理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和Sn=Aqn+B,則A+B=0是使{an}成為公比不等于1的等比數(shù)列的(  )

查看答案和解析>>

同步練習(xí)冊答案