4.若a,b∈{0,1,2},則函數(shù)f(x)=ax2+2x+b有零點的概率為$\frac{2}{3}$.

分析 當函數(shù)f(x)=ax2+2x+b沒有零點時,a≠0,且△=4-4ab<0,即ab>1,由此利用對立事件概率計算公式能求出函數(shù)f(x)=ax2+2x+b有零點的概率.

解答 解:a,b∈{0,1,2},
當函數(shù)f(x)=ax2+2x+b沒有零點時,
a≠0,且△=4-4ab<0,即ab>1,
∴(a,b)有三種情況:
(1,2),(2,1),(2,2),
基本事件總數(shù)n=3×3=9,
∴函數(shù)f(x)=ax2+2x+b有零點的概率為p=1-$\frac{3}{9}=\frac{2}{3}$.
故答案為:$\frac{2}{3}$.

點評 本題考查概率的求法,考查函數(shù)的零點、對立事件概率計算公式等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.吳敬《九章算法比類大全》中描述:遠望巍巍塔七層,紅燈向下成培增,共燈三百八十一,請問塔頂幾盞燈?( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在如圖所示的銳角三角形空地中,有一內接矩形花園(陰影部分),其一邊長為x(單位:m).將一顆豆子隨機地扔到該空地內,用A表示事件:“豆子落在矩形花園內”,則P(A)的最大值為(  )
A.$\frac{1}{4}$B.$\frac{5}{12}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.“a=0”是“函數(shù)f(x)=x3+ax2(x∈R)為奇函數(shù)”的充要條件.(填“充分不必要、必要不充分、既不充分又不必要、充要”中的一個).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,且滿足:a1=a,rSn=anan+1-b,n∈N*
(1)求a2和a3(結果用a,r,b表示);
(2)若存在正整數(shù)T,使得對任意n∈N*,都有an+T=an成立,求T的最小值;
(3)定義:對于?n∈N*,若數(shù)列{xn}滿足xn+1-xn>1,則稱這個數(shù)列為“Y數(shù)列”.已知首項為b(b為正奇數(shù)),公比q為正整數(shù)的等比數(shù)列{bn}是“Y數(shù)列”,數(shù)列$\{\frac{b_n}{2}\}$不是“Y數(shù)列”,當r>0時,{an}是各項都為有理數(shù)的等差數(shù)列,求anbn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{cn}的前n項和為Sn,滿足2Sn=n(cn+2).
(1)求c1的值,并證明數(shù)列{cn}是等差數(shù)列;
(2)若${a_n}=\frac{c_n}{2^n}$,且數(shù)列{an}的最大項為$\frac{5}{4}$.
①求數(shù)列{an}的通項公式;
②若存在正整數(shù)x,使am,an,xak成等差數(shù)列(m<n<k,m,n,k∈N*),則當T(x)=am+an+xak取得最大值時,求x的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-4y+10≥0\\ 2x+y-2≥0\\ 3x-y-3≤0\end{array}\right.$,則$z=\frac{2}{{{x^2}+{y^2}+4x-2y+5}}$的取值范圍為[$\frac{1}{10}$,$\frac{2}{5}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若變量x、y滿足約束條件$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-2≤0\\ x-y≥0\end{array}\right.$,則$\frac{x+1}{x+y+1}$的最小值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知全集U={-3,-2,-1,0,1,2,3},集合A={x|-2≤x≤3},B={0,1,2},則A∩(∁UB)=( 。
A.{0,1,2}B.{-2,-1,3}C.{-3}D.{-2,-1,0,1,2,3}

查看答案和解析>>

同步練習冊答案