(1)四面體的一個(gè)頂點(diǎn)為A,從其他頂點(diǎn)和各棱中點(diǎn)中取3個(gè)點(diǎn),使它們和點(diǎn)A在同一平面上,有多少種不同的取法?

(2)四面體的頂點(diǎn)和各棱中點(diǎn)共10個(gè)點(diǎn),在其中取4個(gè)不共面的點(diǎn),有多少種不同的取法?

思路解析:四點(diǎn)共面問(wèn)題需明確滿足何條件的四點(diǎn)共面.

解:(1)(直接法)如圖,含頂點(diǎn)A的四面體的3個(gè)面上,除點(diǎn)A外都有5個(gè)點(diǎn),從中取出3點(diǎn)必與點(diǎn)A共面共有種取法,含頂點(diǎn)A的三條棱上各有三個(gè)點(diǎn),它們與所對(duì)的棱的中點(diǎn)共面,共有3種取法.根據(jù)分類計(jì)數(shù)原理,知與頂點(diǎn)A共面三點(diǎn)的取法有+3=33種.

(2)(間接法)如圖,從10個(gè)頂點(diǎn)中取4個(gè)點(diǎn)的取法有種,除去4點(diǎn)共面的取法種數(shù)可以得到結(jié)果.從四面體同一個(gè)面上的6個(gè)點(diǎn)中取出的4點(diǎn)必定共面,有=60種.四面體的每一棱上3點(diǎn)與相對(duì)棱中點(diǎn)共面,共有6種共面情況.從6條棱的中點(diǎn)中取4個(gè)點(diǎn)時(shí)有3種共面情形(對(duì)棱中點(diǎn)連線兩兩相交且互相平分),故4點(diǎn)不共面的取法為-(60+6+3)=141種.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、四面體的一個(gè)頂點(diǎn)為A,從其它頂點(diǎn)與各棱的中點(diǎn)中取3個(gè)點(diǎn),使它們和點(diǎn)A在同一平面上,不同的取法有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高三數(shù)學(xué)教學(xué)與測(cè)試 題型:044

(1)四面體的一個(gè)頂點(diǎn)為A,從其它頂點(diǎn)和各棱的中點(diǎn)中取3個(gè)點(diǎn),使它們和點(diǎn)A在同一個(gè)平面上,有多少種不同的取法?

(2)四面體的頂點(diǎn)和各棱中點(diǎn)共10個(gè)點(diǎn),在其中取4個(gè)不共面的點(diǎn),有多少種不同的取法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆新課標(biāo)高三下學(xué)期二輪復(fù)習(xí)理科數(shù)學(xué)綜合驗(yàn)收試卷(3) 題型:選擇題

四面體的一個(gè)頂點(diǎn)為A,從其它頂點(diǎn)與棱的中點(diǎn)中任取3個(gè)點(diǎn),使它們和點(diǎn)A在同一平面上,不同的取法有   (    )

A.30種 B.33種         C.36種         D.39種

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)四面體的一個(gè)頂點(diǎn)為A,從其他頂點(diǎn)和各棱中點(diǎn)中取3個(gè)點(diǎn),使它們和點(diǎn)A在同一平面上,有多少種不同的取法?

(2)四面體的頂點(diǎn)和各棱中點(diǎn)共10個(gè)點(diǎn),取其中4個(gè)不共面的點(diǎn),有多少種不同的取法?

查看答案和解析>>

同步練習(xí)冊(cè)答案