【題目】2020年春節(jié)期間,隨著新型冠狀病毒肺炎疫情在全國擴(kuò)散,各省均啟動重大突發(fā)公共衛(wèi)生事件一級響應(yīng),采取了一系列有效的防控措施.如測量體溫、有效隔離等.

1)現(xiàn)從深圳市某社區(qū)的體溫登記表中隨機(jī)采集100個樣本.據(jù)分析,人群體溫近似服從正態(tài)分布.表示所采集100個樣本的數(shù)值在之外的的個數(shù),求X的數(shù)學(xué)期望.

2)疫情期間,武漢大學(xué)中南醫(yī)院重癥監(jiān)護(hù)室(ICU)主任彭志勇團(tuán)隊對138例確診患者進(jìn)行跟蹤記錄.為了分析并發(fā)癥(complications)與重癥患者(ICU)有關(guān)的可信程度,現(xiàn)從該團(tuán)隊發(fā)表在國際頂級醫(yī)學(xué)期刊JAMA《美國醫(yī)學(xué)會雜志》研究論文中獲得相關(guān)數(shù)據(jù).請將下列2×2列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯誤的概率不超過0.1%的前提下認(rèn)為重癥患者與并發(fā)癥有關(guān)?

附:若,則,.

參考公式與臨界值表:,其中.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】1;2)填表見解析;能在犯錯誤的概率不超過0.1%的前提下認(rèn)為重癥患者與并發(fā)癥有關(guān)

【解析】

(1)利用正態(tài)分布以及二項分布的概率公式和數(shù)學(xué)期望公式即可求解.

(2)利用獨(dú)立性檢驗的公式直接求解即可.

1)由已知體溫落在之內(nèi)的概率為,

∴落在之外的概率為.

.

..

2)填表如下:.

無并發(fā)癥

并發(fā)癥

合計

非重癥

64

38

102

重癥

10

26

36

合計

74

64

138

.

P(K210.828)=0.001,

故由獨(dú)立性檢驗的意義可知:能在犯錯誤的概率不超過0.1%的前提下認(rèn)為重癥患者與并發(fā)癥有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年3月21日是世界睡眠日,良好的睡眠狀況是保持身體健康的重要基礎(chǔ).為了做好今年的世界睡眠日宣傳工作,某社區(qū)從本轄區(qū)內(nèi)同一年齡層次的人員中抽取了100人,通過問詢的方式得到他們在一周內(nèi)的睡眠時間(單位:小時),并繪制出如右的頻率分布直方圖:

(Ⅰ)求這100人睡眠時間的平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,結(jié)果精確到個位);

(Ⅱ)由直方圖可以認(rèn)為,人的睡眠時間近似服從正態(tài)分布,其中近似地等于樣本平均數(shù)近似地等于樣本方差,.假設(shè)該轄區(qū)內(nèi)這一年齡層次共有10000人,試估計該人群中一周睡眠時間位于區(qū)間(39.2,50.8)的人數(shù).

附:.若隨機(jī)變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,平面,點(diǎn)分別為中點(diǎn).

1)求證:直線平面;

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點(diǎn).

)求證:ACSD;

)若SD平面PAC,求二面角P-AC-D的大;

)在()的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC.若存在,求SEEC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面為等腰梯形,,,丄底面.

(1)證明:平面平面

(2)過的平面交于點(diǎn),若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是單位圓上的動點(diǎn),點(diǎn)是直線上的動點(diǎn),定義,則的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗:將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:

為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線交于不同的兩點(diǎn)、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對n個互不相等的正整數(shù),其中任意六個數(shù)中都至少存在兩個數(shù),使得其中一個能整除另一個.求n的最小值,使得在這n個數(shù)中一定存在六個數(shù),其中一個能被另外五個整除.

查看答案和解析>>

同步練習(xí)冊答案