【題目】設(shè)數(shù)列{}是等差數(shù)列,數(shù)列{}的前項(xiàng)和滿足,,

1)求數(shù)列{}{}的通項(xiàng)公式:

2)設(shè)為數(shù)列{}的前項(xiàng)和,求

【答案】1;2

【解析】

試題分析:(1)根據(jù)公式時(shí),可推導(dǎo)出,根據(jù)等比數(shù)列的定義可知數(shù)列是公比為的等比數(shù)列,由等比數(shù)列的通項(xiàng)公式可求。從而可得的值。由的值可得公差,從而可得首項(xiàng)。根據(jù)等差數(shù)列的通項(xiàng)公式可得。(2)用錯(cuò)位相減法求數(shù)列的和:先將的式子列出,然后左右兩邊同乘以等比數(shù)列的公比,并將等式右邊空出一個(gè)位置,然后將兩個(gè)式子相減,用等比數(shù)列的前項(xiàng)和公式整理計(jì)算,可得。

解(1)由(1)

知當(dāng)=1時(shí),,

當(dāng) 2時(shí),(2)

(1)(2),

( 2)

是以為首項(xiàng)以為公比的等比數(shù)列,

2 =

=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】這六個(gè)數(shù)字.

(1)能組成多少個(gè)無重復(fù)數(shù)字的四位偶數(shù)?

(2)能組成多少個(gè)無重復(fù)數(shù)字且為的倍數(shù)的五位數(shù)?

(3)能組成多少個(gè)無重復(fù)數(shù)字且比大的四位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4.

(1)從袋中隨機(jī)取出兩個(gè)球,求取出的球的編號(hào)之和不大于4的概率.

(2)先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為m,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為n,求n<m+2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cos2B+cosB=1-cosAcosC.

(1)求證:a,bc成等比數(shù)列;

(2)b=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 上頂點(diǎn)為右焦點(diǎn)為,過右頂點(diǎn)作直線且與軸交于點(diǎn),又在直線和橢圓上分別取點(diǎn)和點(diǎn)滿足為坐標(biāo)原點(diǎn)),連接.

1)求的值,并證明直線與圓相切;

(2)判斷直線與圓是否相切?若相切,請證明;若不相切,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中:

①若向量a,b共線,則向量a,b所在的直線平行;

②若向量a,b所在的直線為異面直線,則向量a,b一定不共面;

③若三個(gè)向量a,bc兩兩共面,則向量a,b,c共面;

④已知空間的三個(gè)向量,則對于空間的任意一個(gè)向量,總存在實(shí)數(shù)x,y,z,使得。

正確命題的個(gè)數(shù)是(

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Mx2+y-22=1Qx軸上的動(dòng)點(diǎn),QAQB分別切圓MA,B兩點(diǎn)。

1)若Q10),求切線QAQB的方程;

2)求四邊形QAMB面積的最小值;

3)若|AB|=,求直線MQ的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年一交警統(tǒng)計(jì)了某段路過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):

車速

事故次數(shù)

(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到時(shí),可能發(fā)生的交通事故次數(shù).

(參考數(shù)據(jù):

[參考公式:]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

(1)求函數(shù)的最大值;

(2)對于任意,且,是否存在實(shí)數(shù),使

成立,若存在求出的范圍,若不存在,說明理由;

(3)若正項(xiàng)數(shù)列滿足,且數(shù)列的前項(xiàng)和為,試判斷

的大小,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案