已知數(shù)列{an}是正項(xiàng)等比數(shù)列,{bn}是等差數(shù)列,且a6=b8,則一定有( 。
分析:先利用等比中項(xiàng)的性質(zhì)以及基本不等式把a(bǔ)6轉(zhuǎn)化,再利用等差數(shù)列的性質(zhì)把b8轉(zhuǎn)化;最后代入已知即可找到答案.
解答:解:因?yàn)?span id="mguiish" class="MathJye">a6=
a3a9
a3+a9
2

b8=
b9+b7
2

所以a6=b8⇒a3+a9≥b9+b7
故選   B.
點(diǎn)評(píng):本題考查等差數(shù)列與等比數(shù)列的基礎(chǔ)知識(shí)以及基本不等式的應(yīng)用.是對(duì)基礎(chǔ)知識(shí)的考查,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是正項(xiàng)等差數(shù)列,給出下列判斷:
①a2+a8=a4+a6;②a4•a6≥a2•a8;③a52≤a4•a6;④a2+a8≥2
a4a6
.其中有可能正確的是( 。
A、①④B、①②④
C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是正項(xiàng)等比數(shù)列,公比q≠1,若lga2是lga1和1+lga4的等差中項(xiàng),且a1a2a3=1.
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)cn=
1n(3-lgan)
(n∈N*)
,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是正項(xiàng)等比數(shù)列,若a1=32,a4=4,則數(shù)列{log2an}的前n項(xiàng)和Sn的最大值為
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•南寧模擬)已知數(shù)列{an}是正項(xiàng)等比數(shù)列,若a2=2,2a3+a4=16則數(shù)列{an}的通項(xiàng)公式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•桂林模擬)已知數(shù)列{an}是正項(xiàng)數(shù)列,其首項(xiàng)a1=3,前n項(xiàng)和為Sn,4Sn=
a
2
n
+2an+4(n≥2)

(1)求數(shù)列{an}的第二項(xiàng)a2及通項(xiàng)公式;
(2)設(shè)bn=
1
Sn
,記數(shù)列{bn}的前n項(xiàng)和為Kn,求證:Kn
17
21

查看答案和解析>>

同步練習(xí)冊(cè)答案