A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 在①中,由OM∥PD,得到OM∥面PCD;在②中,OM∩平面PBC=M;在③中,由OM∥PD,得OM∥面PCD;在④中,OM∩平面PBA=M.
解答 解:由P為矩形ABCD所在平面外一點,矩形對角線交點為O,M為PB的中點,知:
在①中,∵矩形ABCD中,O是BD中點,M為PB的中點,
∴OM∥PD,又OM?平面PCD,PD?平面PCD,∴OM∥面PCD,故①正確;
在②中,∵OM∩平面PBC=M,∴OM∥面PBC不成立,故②錯誤;
在③中,∵矩形ABCD中,O是BD中點,M為PB的中點,
∴OM∥PD,又OM?平面PDA,PD?平面PDA,∴OM∥面PCD,故③正確;
在④中,∵OM∩平面PBA=M,∴OM∥面PBA不成立,故④錯誤.
故選:B.
點評 本題考查命題真判斷,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$ | B. | $g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=1+\frac{{{2^x}+{2^{-x}}}}{2}$ | ||
C. | $g(x)=1+\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$ | D. | $g(x)=\frac{{{2^x}-{2^{-x}}+1}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}+1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
P(K2≥x0) | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
x0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ③④ | B. | ②③ | C. | ①④ | D. | ①② |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
$\frac{1}{3}$x-$\frac{π}{6}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2 |
x | $\frac{π}{2}$ | 2π | $\frac{7π}{2}$ | 5π | $\frac{13π}{2}$ |
y | 0 | 2 | 0 | 2 | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3600 | B. | 350 | C. | 4800 | D. | 480 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com