【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x 軸的正半軸為極軸建立極坐標(biāo)系,己知曲線C1 的方程為ρ=2cosθ+2sinθ,直線 C2 的參數(shù)方程為(t 為參數(shù))
(Ⅰ)將 C1 的方程化為直角坐標(biāo)方程;
(Ⅱ)P 為 C1 上一動(dòng)點(diǎn),求 P 到直線 C2 的距離的最大值和最小值.
【答案】(1) (x﹣1)2+(y﹣1)2=2;(2)見(jiàn)解析
【解析】分析:(1)利用極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式即可;
(2)將直線的參數(shù)方程消去t化為直角坐標(biāo)方程,利用點(diǎn)到直線的距離公式即可求出答案.
詳解:(Ⅰ)因?yàn)榍 C1 的方程為ρ=2cosθ+2sinθ,則ρ2=2ρcosθ+2ρsinθ, 所以 C1 的直角坐標(biāo)方程是 x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2;
(Ⅱ)因?yàn)橹本 C2 的參數(shù)方程為(t 為參數(shù)) 所以直線 C2 的直角坐標(biāo)方程為 x+y+2=0,
因?yàn)?/span>圓心 C1(1,1)到直線 C2 的距離 d==2 , 則直線與圓相離
所以求 P 到直線 C2 的距離的最大值是 3,最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镽,且f(2)=2,又函數(shù)f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,若兩個(gè)正數(shù)a、b滿(mǎn)足f(2a+b)<2,則 的取值范圍是( )
A.( ,2)
B.(﹣∞, )∪(2,+∞)
C.(2,+∞)
D.(﹣∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 =1(a>b>0)上的點(diǎn)到右焦點(diǎn)F的最小距離是 ﹣1,F(xiàn)到上頂點(diǎn)的距離為 ,點(diǎn)C(m,0)是線段OF上的一個(gè)動(dòng)點(diǎn).
(1)求橢圓的方程;
(2)是否存在過(guò)點(diǎn)F且與x軸不垂直的直線l與橢圓交于A、B兩點(diǎn),使得( + )⊥ ,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在不為零的常數(shù),使得函數(shù)對(duì)定義域內(nèi)的任一均有,則稱(chēng)函數(shù)為周期函數(shù),其中常數(shù)就是函數(shù)的一個(gè)周期.
(Ⅰ)證明:若存在不為零的常數(shù)使得函數(shù)對(duì)定義域內(nèi)的任一均有,則此函數(shù)是周期函數(shù);
(Ⅱ)若定義在上的奇函數(shù)滿(mǎn)足,試探究此函數(shù)在區(qū)間內(nèi)的零點(diǎn)的最少個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將邊長(zhǎng)分別為、、、…、、、…的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第個(gè)、第個(gè)、……、第個(gè)陰影部分圖形.設(shè)前個(gè)陰影部分圖形的面積的平均值為.記數(shù)列滿(mǎn)足,
(1)求的表達(dá)式;
(2)寫(xiě)出,的值,并求數(shù)列的通項(xiàng)公式;
(3)定義,記,且恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系上一動(dòng)點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)的距離的2倍。
(1)求點(diǎn)的軌跡方程;
(2)若點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),求,兩點(diǎn)間距離的最大值。
(3)若過(guò)點(diǎn)的直線與點(diǎn)的軌跡相交于、兩點(diǎn),,則是否存在直線,使 取得最大值,若存在,求出此時(shí)的方程,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市食品藥品監(jiān)督管理局開(kāi)展2019年春季校園餐飲安全檢查,對(duì)本市的8所中學(xué)食堂進(jìn)行了原料采購(gòu)加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的檢查和評(píng)分,其評(píng)分情況如下表所示:
中學(xué)編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采購(gòu)加工標(biāo)準(zhǔn)評(píng)分x | 100 | 95 | 93 | 83 | 82 | 75 | 70 | 66 |
衛(wèi)生標(biāo)準(zhǔn)評(píng)分y | 87 | 84 | 83 | 82 | 81 | 79 | 77 | 75 |
(1)已知x與y之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(精確到0.1)
(2)現(xiàn)從8個(gè)被檢查的中學(xué)食堂中任意抽取兩個(gè)組成一組,若兩個(gè)中學(xué)食堂的原料采購(gòu)加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的評(píng)分均超過(guò)80分,則組成“對(duì)比標(biāo)兵食堂”,求該組被評(píng)為“對(duì)比標(biāo)兵食堂”的概率.
參考公式:,;
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)任意x∈(0,π),不等式ex﹣e﹣x>asinx恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[﹣2,2]
B.(﹣∞,e]
C.(﹣∞,2]
D.(﹣∞,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù)滿(mǎn)足:對(duì)任意的實(shí)數(shù),存在非零常數(shù),都有成立.
(1)當(dāng)時(shí),若, ,求函數(shù)在閉區(qū)間上的值域;
(2)設(shè)函數(shù)的值域?yàn)?/span>,證明:函數(shù)為周期函數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com