17.過拋物線x2=4y焦點F的直線交拋物線于A,B兩點,若|AF|=3,則|BF|的值為( 。
A.2B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

分析 根據(jù)拋物線的定義,結(jié)合|AF|=3,求出A的坐標,然后求出AF的方程求出B點的橫坐標即可得到結(jié)論.

解答 解:拋物線x2=4y,拋物線的焦點F(0,1),
準線方程為y=-1,p=2,
設(shè)A(x,y),
則|AF|=y+1=3,故y=2,此時x=2$\sqrt{2}$,即A(2$\sqrt{2}$,2),
kAF=$\frac{2-1}{2\sqrt{2}-0}$=$\frac{\sqrt{2}}{4}$,
則直線AF的方程為:y=$\frac{\sqrt{2}}{4}$x+1,
代入x2=4y,得x2-$\sqrt{2}$x-4=0,
解得x=2$\sqrt{2}$(舍)或x=-$\sqrt{2}$,則y=$\frac{1}{2}$,B(-$\sqrt{2}$,$\frac{1}{2}$)
則|BF|=$\sqrt{(\sqrt{2})^{2}+(1-\frac{1}{2})^{2}}$=$\frac{3}{2}$,
故選:D.

點評 本題主要考查拋物線的弦長的計算,根據(jù)拋物線的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,在三棱柱ABC-A1B1C1中,四邊形AA1B1B為邊長為2的正方形,四邊形BB1C1C為菱形,∠BB1C1=60°,平面AA1B1B⊥平面BB1C1C,點E、F分別是B1C,AA1的中點.
(1)求證:EF∥平面ABC;
(2)求二面角B-AC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=3sin(2x-$\frac{π}{4}$),則下列結(jié)論正確的是( 。
A.若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z)
B.函數(shù)f(x)的圖象關(guān)于(-$\frac{π}{8}$,0)對稱
C.函數(shù)f(x)的圖象與g(x)=3cos(2x+$\frac{π}{4}$)的圖象相同
D.函數(shù)f(x)在[-$\frac{1}{8}$π,$\frac{3}{8}$π]上遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為AD,A1B1的中點.
(1)求證:DB1⊥CD1;
(2)求三棱錐B-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知圓O:x2+y2=4,直線l:mx-y+1=0與圓O交于點A,C,直線n:x+my-m=0與圓O交于點B,D,則四邊形ABCD面積的最大值是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知平行六面體ABCD-A1B1C1D1,設(shè)A1D1中點為M,CD的中點為N,若∠A1AD=∠A1AB=∠BAD=60°且AA1=AB=AD=1,則|AC1|=$\sqrt{6}$,若$\overrightarrow{MN}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,則x+y+z=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知tan(-α)=3,則$\frac{{{{sin}^2}α-sin2α}}{cos2α}$等于( 。
A.-$\frac{8}{3}$B.$\frac{8}{3}$C.-$\frac{15}{8}$D.$\frac{15}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合I={x∈Z|-3<x<3},A={-2,0,1},B={-1,0,1,2},則(∁IA)∩B等于( 。
A.{-1}B.{2}C.{-1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某電影公司2012年大陸電影票房為21億元,若該公司大陸電影票房的年平均增長率為x,2016年大陸電影票房為y億元,則y與x的函數(shù)關(guān)系式為( 。
A.y=84xB.y=21(1+4x)C.y=21x4D.y=21(1+x)4

查看答案和解析>>

同步練習(xí)冊答案