已知橢圓上的點到左右兩焦點的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過右焦點的直線交橢圓于兩點,若軸上一點滿足,求直線的斜率的值.

(1);(2)

解析試題分析:(1)根據(jù)與離心率可求得a,b,c的值,從而就得到橢圓的方程;(2)設出直線的方程,并與橢圓方程聯(lián)立消去y可得到關于x的一元二次方程,然后利用中點坐標公式與分類討論的思想進行解決.
試題解析:(1),∴
,∴,∴
橢圓的標準方程為
(2)已知,設直線的方程為,-,
聯(lián)立直線與橢圓的方程,化簡得:,
,
的中點坐標為
①當時,的中垂線方程為,
,∴點的中垂線上,將點的坐標代入直線方程得:
,即,
解得 .
②當時,的中垂線方程為,滿足題意,
∴斜率的取值為.
考點:1、橢圓的方程及幾何性質(zhì);2、直線與橢圓的位置關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù),).
(1)化曲線的極坐標方程為直角坐標方程;
(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓C的中心在原點,焦點在x軸上,離心率為,且過點,點A、B分別是橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.

(1)求橢圓C的方程;
(2)求點P的坐標;
(3)設M是直角三角PAF的外接圓圓心,求橢圓C上的點到點M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓 的離心率為 ,點 為其下焦點,點為坐標原點,過 的直線 (其中)與橢圓 相交于兩點,且滿足:.

(1)試用  表示 ;
(2)求  的最大值;
(3)若 ,求  的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點分別是橢圓的左、右焦點, 點在橢圓上上.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設直線、均與橢圓相切,試探究在軸上是否存在定點,點的距離之積恒為1?若存在,請求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線.
(1)若曲線是焦點在軸上的橢圓,求的取值范圍;
(2)設,過點的直線與曲線交于,兩點,為坐標原點,若為直角三角形,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓的右頂點為A(2,0),點P(2e,)在橢圓上(e為橢圓的離心率).

(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點在拋物線上.
(1)若的三個頂點都在拋物線上,記三邊,所在直線的斜率分別為,,,求的值;
(2)若四邊形的四個頂點都在拋物線上,記四邊,,所在直線的斜率分別為,,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定橢圓,稱圓心在坐標原點O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是.
(1)若橢圓C上一動點滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為,求P點的坐標;
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案