10.若集合A={x|x2+3x-4>0},集合B={x|-1<x≤3},且M=A∩B,則有( 。
A.-1∈MB.0∈MC.1∈MD.2∈M

分析 化簡集合A,求出A,B的交集,由元素與集合的關(guān)系,即可得到結(jié)論.

解答 解:集合A={x|x2+3x-4>0}={x|-4<x<1},
集合B={x|-1<x≤3},
則M=A∩B={x|-1<x<1},
即有0∈M,
故選:B.

點評 本題考查集合的運算,主要是交集和元素與集合的關(guān)系的判斷,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,角A,B,C所對邊分別為a,b,c,若B=30°,b=2,c=2$\sqrt{3}$,則角C=( 。
A.60°或120°B.60°C.30°或150°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x3-2x2+1.
(1)f(x)在區(qū)間[-1,1]上的最大值;
(2)若函數(shù)g(x)=f(x)-mx區(qū)間[-2,2]上存在遞減區(qū)間,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C方程為:x2+y2=4.
(1)直線l過點P(1,2),且與圓C交于A、B兩點,若$|AB|=2\sqrt{3}$,求直線l的方程;
(2)過點P(1,2)作圓C的切線,設(shè)切點分別為M,N,求直線NM方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)數(shù)列{an}為等差數(shù)列,且a11=$\frac{π}{2}$,若f(x)=sin2x+2cos2$\frac{x}{2}$,記bn=f(an),則數(shù)列{bn}的前21項和為21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.從圓x2+y2=4內(nèi)任取一點p,則p到直線x+y=1的距離小于$\frac{\sqrt{2}}{2}$的概率$\frac{π+2}{4π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某校高三(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下,據(jù)此解答下列問題:

(Ⅰ)求全班人數(shù)及分數(shù)在[80,90)之間的頻數(shù);
(Ⅱ)若要從分數(shù)在[90,100]之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“$\frac{1}{x}>1$”是“ex-1<1”的( 。
A.充分且不必要條件B.必要且不充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=mx+lnx.
(Ⅰ)若f(x)的最大值為-1,求實數(shù)m的值;
(Ⅱ)若f(x)的兩個零點為x1,x2且ex1≤x2,求y=(x1-x2)f′(x1+x2)的最小值.(其中e為自然對數(shù)的底數(shù),f′(x)是f(x)的導(dǎo)函數(shù))

查看答案和解析>>

同步練習(xí)冊答案