【題目】若事件A和B是互斥事件,且P(A)=0.1,則P(B)的取值范圍是( )
A. [0,0.9] B. [0.1,0.9] C. (0,0.9] D. [0,1]
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由直線與圓相切時,圓心與切點(diǎn)連線與直線垂直,想到平面與球相切時,球心與切點(diǎn)連線與平面垂直,用的是( )
A. 類比推理 B. 演繹推理 C. 歸納推理 D. 傳遞性推理
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將全班同學(xué)按學(xué)號編號,制作相應(yīng)的卡片號簽,放入同一個箱子里均勻攪拌,從中抽出15個號簽,就相應(yīng)的15名學(xué)生對看足球比賽的喜愛程度(很喜愛、喜愛、一般、不喜愛、很不喜愛)進(jìn)行調(diào)查,使用的是___法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,取相同單位長度(其中,,).
(1)直線過原點(diǎn),且它的傾斜角,求與圓的交點(diǎn)的極坐標(biāo)(點(diǎn)不是坐標(biāo)原點(diǎn));
(2)直線過線段中點(diǎn),且直線交圓于,兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面平面,.
(1)求證: 平面;
(2)求直線與平面所成角的正弦值;
(3)在棱上是否存在點(diǎn),使得平面?若存在, 求的值;若不存在, 說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】100件產(chǎn)品中有10件次品,從中任取7件,至少有5件次品的概率可以看成三個互斥事件的概率和,則這三個互斥事件分別是_____,_____和_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了若干名學(xué)生的體檢表,并得到 如下直方圖:
(Ⅰ)若直方圖中前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);
(Ⅱ)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對年紀(jì)名次在1~50名和951~1000名的學(xué)生進(jìn)行了調(diào)查,得到如下數(shù)據(jù):
根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系?
(Ⅲ)在(Ⅱ)中調(diào)查的100名學(xué)生中,在不近視的學(xué)生中按照成績是否在前50名分層抽樣抽取了9人,
進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,并且在這9人中任取3人,記名次在1~50名的學(xué)生人數(shù)為,求
的分布列和數(shù)學(xué)期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是一次函數(shù),且f(-2)=-1,f(0)+f(2)=10,則f(x)的解析式為( 。
A. 3x+5 B. 3x+2 C. 2x+3 D. 2x-3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com