【題目】橢圓 + =1(a>b>0)的左、右頂點分別是A,B,左、右焦點分別是F1 , F2 . 若|AF1|,|F1F2|,|F1B|成等比數列,則此橢圓的離心率為 .
科目:高中數學 來源: 題型:
【題目】已知集合集合,集合,且集合D滿足.
(1)求實數a的值.
(2)對集合,其中,定義由中的元素構成兩個相應的集合:,,其中是有序實數對,集合S和T中的元素個數分別為和,若對任意的,總有,則稱集合具有性質P.
①請檢驗集合是否具有性質P,并對其中具有性質P的集合,寫出相應的集合S和T.
②試判斷m和n的大小關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)求實數a的一個值,使它成為M∩P={x|5<x≤8}的一個充分但不必要條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線參數方程為(為參數,),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(Ⅰ)寫出曲線的普通方程和曲線的直角坐標方程;
(Ⅱ)已知點,曲線和曲線交于,兩點,且,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
(1)(坐標系與參數方程選做題)曲線C的直角坐標方程為x2+y2﹣2x=0,以原點為極點,x軸的正半軸為極軸建立積坐標系,則曲線C的極坐標方程為 .
(2)(不等式選做題)在實數范圍內,不等式|2x﹣1|+|2x+1|≤6的解集為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1= ,BC=4,點A1在底面ABC的投影是線段BC的中點O.
(1)證明在側棱AA1上存在一點E,使得OE⊥平面BB1C1C,并求出AE的長;
(2)求平面A1B1C與平面BB1C1C夾角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,底面,,,,分別為的中點,為側棱上的動點
(Ⅰ)求證:平面平面;
(Ⅱ)若為線段的中點,求證:平面;
(Ⅲ)試判斷直線與平面是否能夠垂直。若能垂直,求的值;若不能垂直,請說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com