【題目】已知a>0,b>0,且a2+b2= ,若a+b≤m恒成立,
(Ⅰ)求m的最小值;
(Ⅱ)若2|x﹣1|+|x|≥a+b對任意的a,b恒成立,求實數(shù)x的取值范圍.

【答案】解:(Ⅰ)∵a>0,b>0,且a2+b2= ,

∴9=(a2+b2)(12+12)≥(a+b)2,

∴a+b≤3,(當且僅當 ,即 時取等號)

又∵a+b≤m恒成立,∴m≥3.

故m的最小值為3.

(Ⅱ)要使2|x﹣1|+|x|≥a+b恒成立,須且只須2|x﹣1|+|x|≥3.


【解析】(Ⅰ)變形已知表達式,利用柯西不等式,求出a+b的最大值,即可求m的最小值;(Ⅱ)通過2|x﹣1|+|x|≥a+b對任意的a,b恒成立,結合(Ⅰ)的結果,利用x的范圍分類討論,求出實數(shù)x的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為 為參數(shù)),以坐標原點為極點, x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為 .直線l過點 .
(1)若直線l與曲線C交于A,B兩點,求 的值;
(2)求曲線C的內接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一枚骰子先后拋擲兩次.

(1)一共有多少種不同的結果?

(2)其中向上的數(shù)之和是5的結果有多少種?

(3)向上的數(shù)之和是5的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,且(1﹣2x)n=a0+a1x+a2x2+a3x3+…+anxn
(Ⅰ)求n的值;
(Ⅱ)求a1+a2+a3+…+an的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一批產品中,有一級品100,二級品60,三級品40,分別用系統(tǒng)抽樣和分層抽樣的方法,從這批產品中抽取一個容量為20的樣本,寫出抽樣過程,并說明采用哪種抽樣方法更能反映總體水平.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在每年的春節(jié)后,某市政府都會發(fā)動公務員參與到植樹綠化活動中去.林業(yè)管理部門在植樹前,為了保證樹苗的質量,都會在植樹前對樹苗進行檢測.現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗,量出它們的高度如下(單位:厘米):

甲:37,21,31,20,2919,32,23,25,33

乙:10,30,47,27,4614,26,1044,46

1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結論;

2)設抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入,按程序框(如圖)進行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知R是實數(shù)集,集合A={x|( 2x+1 },B={x|log4(3﹣x)<0.5},則(RA)∩B=(
A.(1,2)
B.(1,2)
C.(1,3)
D.(1,1.5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為1,線段上有兩個動點;則下列結論錯誤的是( )

A. B. 平面

C. 三棱錐的體積為定值 D. 的面積與的面積相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ax2﹣lnx﹣2.
(1)當a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調性.

查看答案和解析>>

同步練習冊答案