12.已知函數(shù)f(x)=ex-ax+b(a,b∈R).
(Ⅰ)若f(x)在x=0處的極小值為2,求a,b的值;
(Ⅱ)設g(x)=f(x)+ln(x+1),當x≥0時,g(x)≥1+b,求a的取值范圍.

分析 (Ⅰ)求出函數(shù)的導數(shù),根據f(x)在x=0處的極小值為2,得到關于a,b的方程組,解出即可;
(Ⅱ)問題轉化為ex-ax+ln(x+1)≥1在x∈[0,+∞)恒成立,令h(x)=ex-ax+ln(x+1),(x≥0),根據函數(shù)的單調性求出a的范圍即可.

解答 解:(Ⅰ)f′(x)=ex-a,
若f(x)在x=0處的極小值為2,
則 $\left\{\begin{array}{l}{f′(0)=1-a=0}\\{f(0)=1+b=2}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=1}\end{array}\right.$;
(Ⅱ)g(x)=f(x)+ln(x+1)=ex-ax+b+ln(x+1),
當x≥0時,g(x)≥1+b,即ex-ax+ln(x+1)≥1在x∈[0,+∞)恒成立,
令h(x)=ex-ax+ln(x+1),(x≥0),
則h′(x)=ex+$\frac{1}{x+1}$-a,
記m(x)=ex+$\frac{1}{x+1}$-a,則m′(x)=ex-$\frac{1}{{(x+1)}^{2}}$,
當x≥0時,ex>1,$\frac{1}{{(x+1)}^{2}}$≤1,此時m'(x)≥0,
h'(x)在(0,+∞)上遞增,
h'(x)≥h'(0)=2-a,
a≤2時,h′(x)≥0,
所以h(x)在[0,+∞)上遞增,
故h(x)≥h(0)=1成立;
a>2時,?x0∈(0,+∞),使得h(x)在[0,x0)遞減,在(x0,+∞)遞增,
故h(x)min=h(x0)<h(0)=1,不合題意,
故a≤2.

點評 本題考查函數(shù)恒成立問題,考查導數(shù)知識的運用,考查分類討論的數(shù)學思想,考查學生分析解決問題的能力,難度大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖所示的程序框圖,輸出的結果是S=2017,則輸入A的值為( 。
A.2018B.2016C.1009D.1008

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知f(x)=x3-2f′(1)x,則f′(1)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知復數(shù)Z1=2+i,Z2=1+i,則$\frac{z_1}{z_2}$在復平面內對應的點位于( 。
A.第一象限B.第三象限C.第二象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.a1=1,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,則數(shù)列{an}的第6項是$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設f(x)=x2-4x(x∈R),則f(x)>0的一個必要而不充分的條件是( 。
A.x<0B.x<0或x>4C.|x-1|>1D.|x-2|>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知點M的坐標為(5,θ),且tan θ=-$\frac{4}{3}$,$\frac{π}{2}$<θ<π,則點M的直角坐標為(-3,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.把0,1,2三個數(shù)字組成四位數(shù),每個數(shù)字至少使用一次,則這樣的四位數(shù)的個數(shù)為( 。
A.18B.24C.27D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.中心在原點,對稱軸為坐標軸的雙曲線C與圓O:x2+y2=10有公共點P(3,-1),且圓O在P點處的切線與雙曲線C的一條漸近線平行,則該雙曲線的實軸長為( 。
A.$\frac{4\sqrt{5}}{3}$B.4$\sqrt{5}$C.$\frac{8\sqrt{5}}{3}$D.8$\sqrt{5}$

查看答案和解析>>

同步練習冊答案