已知函數(shù)
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)如果存在,使函數(shù)處取得最小值,試求的最大值.
解:(Ⅰ)當(dāng)時,上單調(diào)遞減;當(dāng)時,,上單調(diào)遞減,在單調(diào)遞增;當(dāng)時,上單調(diào)遞減,上單調(diào)遞增;當(dāng)時,上單調(diào)遞減,上單調(diào)遞增。
(Ⅱ) 的最大值為
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232332070791299.png" style="vertical-align:middle;" />,然后利用導(dǎo)數(shù)的正負(fù)來判定函數(shù)的單調(diào)性的運(yùn)用。
(2)依題意有在區(qū)間上恒成立,即,構(gòu)造函數(shù)求解最值得到結(jié)論。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)y=f(x)= (a,b,c∈R,a>0,b>0)是奇函數(shù),當(dāng)x>0時,f(x)有最小值2,其中b∈N且f(1)<.試求函數(shù)f(x)的解析式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),其導(dǎo)函數(shù)為
的單調(diào)減區(qū)間是;
的極小值是;
③當(dāng)時,對任意的,恒有
④函數(shù)滿足
其中假命題的個數(shù)為(   )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

映射f:A→B,如果滿足集合B中的任意一個元素在A中都有原象,則稱為“滿射”.已知集合A中有4個元素,集合B中有3個元素,那么從A到B的不同滿射的個數(shù)為
A.24B.6C.36D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

汽車和自行車分別從地和地同時開出,如下圖,各沿箭頭方向(兩方向垂直)勻速前進(jìn),汽車和自行車的速度分別是10米/秒和5米/秒,已知米.(汽車開到地即停止)
(Ⅰ)經(jīng)過秒后,汽車到達(dá)處,自行車到達(dá)處,設(shè)間距離為,試寫出關(guān)于的函數(shù)關(guān)系式,并求其定義域.
(Ⅱ)經(jīng)過多少時間后,汽車和自行車之間的距離最短?最短距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是定義在同一區(qū)間[a, b]上的兩個函數(shù),若函數(shù)上有兩個不同的零點(diǎn),則稱在[a, b]上是“聯(lián)系函數(shù)”,區(qū)間[a, b]稱為“聯(lián)系區(qū)間”.若在[0,3]上是“聯(lián)系函數(shù)”,則k的取值范圍為 (       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
某漁業(yè)公司年初用98萬元購買一艘捕魚船,第一年各種支出費(fèi)用12萬元,以后每年都增加
4萬元,每年捕魚收益50萬元.
(1)該公司第幾年開始獲利?
(2)若干年后,有兩種處理方案:
①年平均獲利最大時,以26萬元出售該漁船;
②總純收入獲利最大時,以8萬元出售漁船.
問哪種處理方案最合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù))的值域?yàn)椋?  )
               

查看答案和解析>>

同步練習(xí)冊答案